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Preface

The purpose of this book is to provide an up-to-data and systematical introduction to the 
principles and algorithms of machine learning. The definition of learning is broad enough to 
include most tasks that we commonly call “Learning” tasks, as we use the word in daily life. 
It is also broad enough to encompass computer that improve from experience in quite straight 
forward ways. 

Machine learning addresses the question of how to build computer programs that improve 
their performance at some task through experience. It attempts to automate the estimation 
process by building machine learners based upon empirical data. Machine learning algorithms 
have been proven to be of great practical value in a variety application domain, such as, 
data mining problems where large databases may contain valuable implicit regularities that 
can be discovered automatically; poorly understood domains where humans might not have 
the knowledge needed to develop effective algorithms; domains where the program must 
dynamically adapt to changing conditions.

Machine learning is inherently a multidisciplinary field. It draws on results from artificial 
intelligence, probability and statistics, computational complexity theory, control theory, 
information theory, philosophy, psychology, neurobiology, and other fields. The goal of 
this book is to present the important advances in the theory and algorithm that from the 
foundations of machine learning. 

Large amount of knowledge about machine learning has been presented in this book, mainly 
include: classification, support vector machine, discriminant analysis, multi-agent system, 
image recognition, ant colony optimization, and so on.

The book will be of interest to industrial engineers and scientists as well as academics who 
wish to pursue machine learning. The book is intended for both graduate and postgraduate 
students in fields such as computer science, cybernetics, system sciences, engineering, 
statistics, and social sciences, and as a reference for software professionals and practitioners. 
The wide scope of the book provides them with a good introduction to many approaches of 
machine learning, and it is also the source of useful bibliographical information.

                                                      Editor:

                                                               Yagang Zhang  
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1. Introduction 
 

In present times, giving a computer to carry out any task requires a set of specific 
instructions or the implementation of an algorithm that defines the rules that need to be 
followed. The present day computer system has no ability to learn from past experiences 
and hence cannot readily improve on the basis of past mistakes. So, giving a computer or 
instructing a computer controlled programme to perform a task requires one to define a 
complete and correct algorithm for task and then programme the algorithm into the 
computer. Such activities involve tedious and time consuming effort by specially trained 
teacher or person.  Jaime et al (Jaime G. Carbonell, 1983) also explained that the present day 
computer systems cannot truly learn to perform a task through examples or through 
previous solved task and they cannot improve on the basis of past mistakes or acquire new 
abilities by observing and imitating experts. Machine Learning research endeavours to open 
the possibility of instruction the computer in such a new way and thereby promise to ease 
the burden of hand writing programmes and growing problems of complex information 
that get complicated in the computer. 
When approaching a task-oriented acquisition task, one must be aware that the resultant 
computer system must interact with human and therefore should closely match human 
abilities. So, learning machine or programme on the other hand will have to interact with 
computer users who make use of them and consequently the concept and skills they 
acquire- if not necessarily their internal mechanism must be understandable to humans. 
Also Alpaydin (Alpaydin, 2004) stated that with advances in computer technology, we 
currently have the ability to store and process large amount of data, as well as access it from 
physically distant locations over computer network. Most data acquisition devices are 
digital now and record reliable data. For example, a supermarket chain that has hundreds of 
stores all over the country selling thousands of goods to millions of customers. The point of 
sale terminals record the details of each transaction: date, customer identification code, 
goods bought and their amount, total money spent and so forth, This typically amounts to 
gigabytes of data every day. This store data becomes useful only when it is analysed and 
tuned into information that can be used or be predicted.  
We do not know exactly which people are likely to buy a particular product or which author 
to suggest to people who enjoy reading Hemingway. If we knew, we would not need any 
analysis of the data; we would just go ahead and write down code. But because we do not, 
we can only collect data and hope to extract the answers to these and similar question from 
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data. We can construct a good and useful approximation. That approximation may not 
explain everything, but may still be able to account for some part of data. We believe that 
identifying the complete process may not be possible, we can still detect certain patterns or 
regularities. This is the niche of machine learning.  Such patterns may help us understand 
the process, or we can use those patterns to make predictions: Assuming that the future, at 
least the near future, will not be much different from the past when the sample data was 
collected, the future predictions can be expected to be right. 
Machine learning is not just a database problem, it is a part of artificial intelligence. To be 
intelligent, a system that is in a changing environment should have the ability to learn. If the 
system can learn and adapt to such changes, the system designer need not foresee and 
provide solutions for all possible situations. Machine learning also help us find solutions to 
may problems in vision, speech recognition and robotics. Lets take the example of 
recognising of faces: This is a task we do effortlessly; we recognise family members and 
friends by looking their faces or from their photographs, despite differences in pose, 
lighting, hair, style and so forth. But we do consciously and are able to explain how we do it. 
Because we are not able to explain our expertise, we cannot write the computer program. At 
the same time, we know that a face image is not just a random collection of pixel: a face has 
structure, it is symmetric. There are the eyes, the nose, the mouth, located in certain places 
on the face. Each person’s face is a pattern that composed of a particular combination of 
these. By analysing sample face images of person, a learning program captures the pattern 
specific to that person and then recognises by checking for the pattern in a given image. This 
is one example of pattern recognition. 
Machine learning is programming computers to optimise a performance criterion using 
example data or past experience. We have a model defined up to some parameters, and 
learning is the execution of a computer program to optimise the parameter of the model 
using the training data or past experience. The model may be predictive to make predictions 
in the future, or descriptive to gain knowledge from data, or both. Machine learning uses the 
theory of statistics in building mathematical models, because the core task is making 
inference from sample. The role of learning is twofold: First, in training, we need efficient 
algorithms to solve the optimised problem, as well as to store and process the massive 
amount of data we generally have.  Second, once a model is learned, its representation and 
algorithmic solution for inference needs to be efficient as well. In certain applications, the 
efficiency of the learning or inference algorithm, namely, its space and time complexity may 
be as important as its predictive accuracy. 

 
1.1 History of Machine Learning 
Over the years, Jaime et al (Jaime G. Carbonell, 1983) elaborated that research in machine 
learning has been pursued with varying degrees of intensity, using different approaches and 
placing emphasis on different, aspects and goals. Within the relatively short history of this 
discipline, one may distinguish three major periods, each centred on a different concept: 
 

 neural modelling and decision-theoretic techniques 
 symbolic concept-oriented learning 

 knowledge-intensive approaches combining various learning strategies 

 

1.1.1 The Neural Modelling (Self Organised System) 
The distinguishing feature of the first concept was the interest in building general purpose 
learning systems that start with little or no initial structure or task-oriented knowledge. The 
major thrust of research based on this approach involved constructing a variety of neural 
model-based machines, with random or partially random initial structure. These systems 
were generally referred to as neural networks or self-organizing systems. Learning in such 
systems consisted of incremental changes in the probabilities that neuron-like elements 
(typically threshold logic units) would transmit a signal. Due to the early computer 
technology, most of the research under this neural network model was either theoretical or 
involved the construction of special purpose experimental hardware systems, such as 
perceptrons (Forsyth, 1990), (Ryszard S. Michalski, 1955), (Rosenblatt, 1958) pandemonium 
(Selfridge, 1959), and (Widrow, 2007).  The groundwork for this paradigm was laid in the 
forties by Rashevsky in the area of mathematical biophysics (Rashevsky, 1948), and by 
McCulloch (McCulloch, 1943), who discovered the applicability of symbolic logic to 
modelling nervous system activities. Among the large number of research efforts in this 
area, one may mention many works such as (Rosenblatt, 1958), (Block H, 1961), (Ashby, 
1960), (Widrow, 2007). Related research involved the simulation of evolutionary processes, 
that through random mutation and “natural” selection might create a system capable of 
some intelligent, behaviour (for example, (Friedberg, 1958), (Holland, 1980). 
Experience in the above areas spawned the new discipline of pattern recognition and led to 
the development of a decision-theoretic approach to machine learning. In this approach, 
learning is equated with the acquisition of linear, polynomial, or related discriminant 
functions from a given set of training examples Example include, (Nilsson, 1982). One of the 
best known successful learning systems utilizing such techniques (as well as some original 
new ideas involving non-linear transformations) was Samuel’s checkers program, (Ryszard 
S. Michalski J. G., 1955). Through repeated training, this program acquired master-level 
performance somewhat, different, but closely related, techniques utilized methods of 
statistical decision theory for learning pattern recognition rules.  

 
1.1.2 The Symbolic Concept Acquisition Paradigm 
A second major paradigm started to emerge in the early sixties stemming from the work of 
psychologist and early AI researchers on models of human learning by Hunt (Hunt, 1966). 
The paradigm utilized logic or graph structure representations rather than numerical or 
statistical methods Systems learned symbolic descriptions representing higher level 
knowledge and made strong structural assumptions about the concepts to he acquired. 
Examples of work in this paradigm include research on human concept acquisition (Hunt, 
1966) and various applied pattern recognition systems. Some researchers constructed task-
oriented specialized systems that, would acquire knowledge in the context of a practical 
problem. Ryszard (Ryszard S. Michalski J. G., 1955), learning system was an influential 
development in this paradigm. In parallel with Winston’s work, different approaches to 
learning structural concepts from examples emerged, including a family of logic-based 
inductive learning programs. 
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1.1.3 The Modern Knowledge-Intensive Paradigm 
The third paradigm represented the most recent period of research starting in the mid-
seventies. Researchers have broadened their interest beyond learning isolated concepts from 
examples, and have begun investigating a wide spectrum of learning methods, most based 
upon knowledge-rich systems specifically, this paradigm can be characterizing by several 
new trends, including: 

1. Knowledge-Intensive Approaches: Researchers are strongly emphasizing the use 
of task-oriented knowledge and the constraints it provides in guiding the learning 
process One lesson from the failures of earlier knowledge and poor learning 
systems that is acquire  and to acquire new knowledge a system must already 
possess a great deal of initial knowledge 

 
2. Exploration of alternative methods of learning: In addition to the earlier research 

emphasis on learning from examples, researchers are now investigating a wider 
variety of learning methods such as learning from instruction,  (e.g  (Mostow, 
1983), learning by analogy and discovery of concepts and classifications (R. S. 
Michalski, 1983). 

In contrast to previous efforts, a number of current systems are incorporating abilities to 
generate and select tasks and also incorporate heuristics to control their focus of attention by 
generating learning tasks, proposing experiments to gather training data, and choosing 
concepts to acquire (e g., Mitchell et al (Mitchell, 2006).  

 
1.2. Importance of Machine Learning 
These are benefits of machine learning and these are why research in machine learning is 
now what could not be avoided or neglected.  Using machine learning techniques make life 
easier for computer users. These are the importance of machine learning. They are:  
 

 Some tasks cannot be defined well except by example; that is we might be able to 
specify input and output pairs but not a concise relationship between inputs and 
desired outputs. We would like machines to be able to adjust their internal 
structure to produce correct outputs for a large number of sample inputs and thus 
suitably constrain their input and output function to approximate the relationship 
implicit in the examples.  

 
 It is possible that hidden among large piles of data are important relationships and 

correlations. Machine learning methods can often be used to extract these 
relationships (data mining). 

 
 Human designers often produce machines that do not work as well as desired in 

the environments in which they are used. In fact, certain characteristics of the 
working environment might not be completely known at design time. Machine 
learning methods can be used for on the job improvement of existing machine 
designs.  

 

 The amount of knowledge available about certain tasks might be too large for 
explicit encoding by humans. Machines that learn this knowledge gradually might 
be able to capture more of it than humans would want to write down. 

 
 Environments change over time. Machines that can adapt to a changing 

environment would reduce the need for constant redesign. New knowledge about 
tasks is constantly being discovered by humans. Vocabulary changes. There is a 
constant stream of new events in the world. Continuing redesign of AI systems to 
conform to new knowledge is impractical. But machine learning methods might be 
able to track much of it. 

 
1.3 Machine Learning Varieties 
Research in machine learning is now converging from several sources and from artificial 
intelligent field.  These different traditions each bring different methods and different 
vocabulary which are now being assimilated into a more united discipline. Here is a brief 
listing of some of the separate disciplines that have contributed to machine learning 
(Nilsson, 1982).   
 

 Statistics: A long-standing problem in statistics is how best to use samples drawn 
from unknown probability distributions to help decide from which distribution 
some new sample is drawn. A related problem is how to estimate the value of an 
unknown function at a new point given the values of this function at a set of 
sample points. Statistical methods for dealing with these problems can be 
considered instances of machine learning because the decision and estimation rules 
depend on a corpus of samples drawn from the problem environment. We will 
explore some of the statistical methods later in the book.  Details about the 
statistical theory underlying these methods can be found in Orlitsky (Orlitsky, 
Santhanam, Viswanathan, & Zhang, 2005). 

 
 Brian Models: Non linear elements with weighted inputs have been suggested as 

simple models of biological neurons. Networks of these elements have been 
studied by several researchers including (Rajesh P. N. Rao, 2002).  Brain modelers 
are interested in how closely these networks approximate the learning phenomena 
of living brain. We shall see that several important machine learning techniques are 
based on networks of nonlinear elements often called neural networks. Work 
inspired by this school is some times called connectionism, brain-style computation 
or sub-symbolic processing.  

 
 Adaptive Control Theory: Control theorists study the problem of controlling a 

process having unknown parameters which must be estimated during operation. 
Often, the parameters change during operation and the control process must track 
these changes. Some aspects of controlling a robot based on sensory inputs 
represent instances of this sort of problem. 
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 Psychological Models:  Psychologists have studied the performance of humans in 
various learning tasks. An early example is the EPAM network for storing and 
retrieving one member of a pair of words when given another (Friedberg, 1958). 
Related work led to a number of early decision tree, (Hunt, 1966) and semantic 
network, (Anderson, 1995) methods. More recent work of this sort has been 
influenced by activities in artificial intelligence which we will be presenting.  Some 
of the work in reinforcement learning can be traced to efforts to model how reward 
stimuli influence the learning of goal seeking behaviour in animals, (Richard S. 
Sutton, 1998). Reinforcement learning is an important theme in machine learning 
research. 

 
 Artificial Intelligence From the beginning, AI research has been concerned with 

machine learning. Samuel developed a prominent early program that learned 
parameters of a function for evaluating board positions in the game of checkers.  AI 
researchers have also explored the role of analogies in learning and how future 
actions and decisions can be based on previous exemplary cases. Recent work has 
been directed at discovering rules for expert systems using decision tree methods 
and inductive logic programming  Another theme has been saving and 
generalizing the results of problem solving using explanation based learning, 
(Mooney, 2000) ,(Y. Chali, 2009).  

 
 Evolutionary Models 

In nature, not only do individual animals learn to perform better, but species 
evolve to be better fit in their individual niches. Since the distinction between 
evolving and learning can be blurred in computer systems, techniques that model 
certain aspects of biological evolution have been proposed as learning methods to 
improve the performance of computer programs. Genetic algorithms and genetic 
programming (Oltean, 2005) are the most prominent computational techniques for 
evolution.  
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1. Machine Learning Overview 
 

Machine Learning according to Michie et al (D. Michie, 1994) is generally taken to 
encompass automatic computing procedures based on logical or binary operations that 
learn a task from a series of examples. Here we are just concerned with classification, and it 
is arguable what should come under the Machine Learning umbrella. Attention has 
focussed on decision-tree approaches, in which classification results from a sequence of 
logical steps. These are capable of representing the most complex problem given sufficient 
data (but this may mean an enormous amount!). Other techniques, such as genetic 
algorithms and inductive logic procedures (ILP), are currently under active development 
and in principle would allow us to deal with more general types of data, including cases 
where the number and type of attributes may vary, and where additional layers of learning 
are superimposed, with hierarchical structure of attributes and classes and so on. Machine 
Learning aims to generate classifying expressions simple enough to be understood easily by 
the human. They must mimic human reasoning sufficiently to provide insight into the 
decision process. Like statistical approaches, background knowledge may be exploited in 
development, but operation is assumed without human intervention. 
To learn is: 

 to gain knowledge, comprehension, or mastery of through experience or 
study or to gain knowledge (of something) or acquire skill in (some art or 
practice) 

 to acquire experience of or an ability or a skill in 
 to memorize (something), to gain by experience, example, or practice. 

 
Machine Learning can be defines as a process of building computer systems that 
automatically improve with experience, and implement a learning process.  Machine 
Learning can still be defined as learning the theory automatically from the data,  
through a process of inference, model fitting, or learning from examples: 
 

 Automated extraction of useful information from a body of data by 
building good probabilistic models. 

 Ideally suited for areas with lots of data in the absence of a general theory. 

2
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A major focus of machine learning research is to automatically produce models and 
a model is a pattern, plan, representation, or description designed to show the main 
working of a system, or concept, such as rules determinate rule for performing a 
mathematical operation and obtaining a certain result, a function from sets of formulae to 
formulae, and patterns ( model which can be used to generate things or parts of a thing from 
data. 
Learning is a MANY-FACETED PHENOMENON as described by Jaime et al (Jaime G. 
Carbonell, 1983) and also stated that Learning processes include the acquisition of new 
declarative knowledge, the development of motor and cognitive skills through instruction 
or practice, the organization of new knowledge into general, effective representations, and 
the discovery of new facts and theories through observation and experimentation. The study 
and computer modelling of learning processes in their multiple manifestations constitutes 
the subject matter of machine learning. Although machine learning has been a central 
concern in artificial intelligence since the early days when the idea of “self-organizing 
systems” was popular, the limitations inherent in the early neural network approaches led to 
a temporary decline in research volume. More recently, new symbolic methods and 
knowledge-intensive techniques have yielded promising results and these in turn have led 
to the current, revival in machine learning research. This book examines some basic 
methodological issues, existing techniques, proposes a classification of machine learning 
techniques, and provides a historical review of the major research directions. 
Machine Learning according to Michie et al (D. Michie, 1994) is generally taken to 
encompass automatic computing procedures based on logical or binary operations that 
learn a task from a series of examples. Here we are just concerned with classification, and it 
is arguable what should come under the Machine Learning umbrella. Attention has 
focussed on decision-tree approaches, in which classification results from a sequence of 
logical steps. These are capable of representing the most complex problem given sufficient 
data (but this may mean an enormous amount!). Other techniques, such as genetic 
algorithms and inductive logic procedures (ILP), are currently under active development 
and in principle would allow us to deal with more general types of data, including cases 
where the number and type of attributes may vary, and where additional layers of learning 
are superimposed, with hierarchical structure of attributes and classes and so on. Machine 
Learning aims to generate classifying expressions simple enough to be understood easily by 
the human. They must mimic human reasoning sufficiently to provide insight into the 
decision process. Like statistical approaches, background knowledge may be exploited in 
development, but operation is assumed without human intervention. Machine learning has 
always been an integral part of artificial intelligence according to Jaime et al (Jaime G. 
Carbonell, 1983), and its methodology has evolved in concert, with the major concerns of the 
field. In response to the difficulties of encoding ever increasing volumes of knowledge in 
model AI systems, many researchers have recently turned their attention to machine 
learning as a means to overcome the knowledge acquisition bottleneck.  This book presents 
a taxonomic analysis of machine learning organized primarily by learning strategies and 
secondarily by knowledge representation and application areas.  A historical survey out 
lining the development of various approaches to machine learning is presented from early 
neural networks to present knowledge-intensive techniques. 
 

1.1 The Aim of Machine Learning 
The field of machine learning can be organized around three primary research Areas:  
 

 Task-Oriented Studies: The development and analysis of learning 
systems oriented toward solving a predetermined set, of tasks (also 
known as the “engineering approach”). 

    Cognitive Simulation: The investigation and computer simulation of 
human learning processes (also known as the “cognitive modelling 
approach”)  

 Theoretical Analysis: the theoretical exploration of the space of possible 
learning methods and algorithms independent application domain.  

 
Although many research efforts strive primarily towards one of these objectives, progress in 
on objective often lends to progress in another. For example, in order to investigate the 
space of possible learning methods, a reasonable starting point may be to consider the only 
known example of robust learning behaviour, namely humans (and perhaps other biological 
systems) Similarly, psychological investigations of human learning may held  by theoretical 
analysis that may suggest various possible learning models. The need to acquire a particular 
form of knowledge in stone task-oriented study may itself spawn new theoretical analysis or 
pose the question: “how do humans acquire this specific skill (or knowledge)?” The 
existence of these mutually supportive objectives reflects the entire field of artificial 
intelligence where expert system research, cognitive simulation, and theoretical studies 
provide some (cross-fertilization of problems and ideas (Jaime G. Carbonell, 1983). 

 
1.1.1 Applied Learning Systems 
At, present, instructing a computer or a computer-controlled robot, to perform a task 
requires one to define a complete and correct, algorithm for that task, and then laboriously 
program the algorithm into a computer. These activities typically involve a tedious and 
time-consuming effort by specially trained personnel. Present-day computer systems cannot 
truly learn to perform a task through examples or by analogy to a similar, previous-solved 
task. Nor can they improve significantly on the basis of past, mistakes or acquire new 
abilities by observing and imitating experts. Machine learning research strives to open the 
possibility of instructing computers in such new ways, and thereby promises to ease the 
burden of hand-programming growing volumes of increasingly complex information into 
the computers of tomorrow. The rapid expansion of application and availability of 
computers today makes this possibility even more attractive and desirable. 

 
1.1.2 Knowledge acquisition 
When approaching a task-oriented knowledge acquisition task, one must be aware that, the 
resultant computer system must interact with humans, and therefore should closely parallel 
human abilities. The traditional argument that an engineering approach need not reflect 
human or biological performance and is not, truly applicable to machine learning. Since 
airplane, a successful result on an almost pure engineering approach, better little 
resemblance to their biological counterparts, one may argue that applied knowledge 
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acquisition systems could be equally divorced from any consideration of human 
capabilities. This argument does not apply 
here because airplanes need not interact, with or understand birds Learning machines, on 
the other hand, will have to interact, with the people who make use of them, and 
consequently the concept and skills they acquire- if not necessarily their internal mechanism 
and must be understandable to human. 

 
1.2 Machine Learning as a Science 
The clear contender for a cognitive invariant in human is the learning mechanism which is 
the ability facts, skills and more abstractive concepts. Therefore understanding human 
learning well enough to reproduce aspect of that learning behaviour in a computer system 
is, in itself, a worthy scientific goal. Moreover, the computer can render substantial 
assistance to cognitive psychology, in that it may be used to test the consistency and 
completeness of learning theories and enforce a commitment to the fine-structure process-
level detail that precludes meaningless tautological or untestable theories (Bishop, 2006). 
The study of human learning processes is also of considerable practical significance.  
Gaining insights into the principles underlying human learning abilities is likely to lead to 
more effective educational techniques. Machine learning research is all about developing 
intelligent computer assistant or a computer tutoring systems and many of these goals are 
shared within the machine learning fields. According to Jaime et al (Jaime G. Carbonell, 
1983) who stated computer tutoring are starting to incorporate abilities to infer models of 
student competence from observed performance. Inferring the scope of a student’s 
knowledge and skills in a particular area allows much more effective and individualized 
tutoring of the student (Sleeman, 1983). 
The basic scientific objective of machine learning is the exploration of possible learning 
mechanisms, including the discovery of different induction algorithms, the scope of 
theoretical limitations of certain method seems to be the information that must be available 
to the learner, the issue of coping with imperfect training data and the creation of general 
techniques applicable in many task domains. There is not reason to believe that human 
learning methods are the only possible mean of acquiring knowledge and skills. In fact, 
common sense suggests that human learning represents just one point in an uncharted space 
of possible learning methods- a point that through the evolutionary process is particularly 
well suited to cope with the general physical environment in which we exist. Most 
theoretical work in machine learning are centred on creation, characterization and analysis 
of general learning methods, with the major emphasis on analyzing generality and 
performance rather than psychological plausibility. 
Whereas theoretical analysis provides a means of exploring the space of possible learning 
methods, the task-oriented approach provides a vehicle to test and improve the 
performance of functional learning systems and testing applied learning systems, one can 
determine the cost-effectiveness trade-offs and limitations of particular approaches to 
learning. In this way, individual data points in the space possible learning systems are 
explored and the space itself becomes better understood. 
Knowledge Acquisition and Skill Refinement: There are two basic form of learning: 
 

1) Knowledge Acquisition  
2) Skill refinement 

When it is said that someone learned mathematics, it means that this person acquired 
concepts of mathematics, understood the meaning and their relationship to each other as 
well as to the world. The importance of learning in this case is acquisition of knowledge, 
including the description and models of physical systems and their behaviours, 
incorporating a variety of representations from simple intrusive mental model models, 
examples and images to completely test mathematical equations and physical laws. A 
person is said to have learned more if this knowledge explains a broader scope of situations, 
is more accurate, and is better able to predict the behaviour of the typical world (Allix, 
2003). This form of learning is typically to a large variety of situations and is generally 
learned knowledge acquisition. Therefore, knowledge acquisition is defined as learning a 
new task coupled with the ability to apply the information in the effective manner. 
The second form of learning is the gradual improvement of motor and cognitive skills 
through practice- Learning by practice. Learning such as: 
 

  Learning to  drive a car 
  Learning to play keyboard 
  Learning to ride a bicycle 
  Learning to play piano 

 
If one acquire all textbook knowledge on how to perform these aforementioned activities, 
this represent the initial phase in developing the required skills. So, the major part of the 
learning process consists of taming the acquired skill, and improving the mental or motor 
coordination or learning coordination by repeated practice and correction of deviations from 
desired behaviour. This form of learning often called skill taming. This differs in many ways 
from knowledge acquisition. Where knowledge acquisition may be a conscious process 
whose result is the creation of new representative knowledge structures and mental models, 
and skill taming is learning from example or learning from repeated practice without 
concerted conscious effort. Jamie (Jaime G. Carbonell, 1983) explained that most human 
learning appears to be a mixture of both activities, with intellectual endeavours favouring 
the former and motor coordination tasks favouring the latter. Present machine learning 
research focuses on the knowledge acquisition aspect, although some investigations, 
specifically those concerned with learning in problem-solving and transforming declarative 
instructions into effective actions, touch on aspects of both types of learning. Whereas 
knowledge acquisition clearly belongs in the realm of artificial intelligence research, a case 
could be made that skill refinement comes closer to non-symbolic processes such as those 
studied in adaptative control system. Hence, perhaps both forms of learning- (knowledge 
based and refinement learning) can be captured in artificial intelligence models.  

 
1.3 Classification of Machine Learning 
There are several areas of machine learning that could be exploited to solve the problems of 
email management and our approach implemented unsupervised machine learning method. 
Uunsupervised learning is a method of machine learning whereby the algorithm is 
presented with examples from the input space only and a model is fit to these observations. 
For example, a clustering algorithm would be a form of unsupervised learning.               
“Unsupervised learning is a method of machine learning where a model is fit to 
observations. It is distinguished from supervised learning by the fact that there is no a priori 
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acquisition systems could be equally divorced from any consideration of human 
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The study of human learning processes is also of considerable practical significance.  
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concerted conscious effort. Jamie (Jaime G. Carbonell, 1983) explained that most human 
learning appears to be a mixture of both activities, with intellectual endeavours favouring 
the former and motor coordination tasks favouring the latter. Present machine learning 
research focuses on the knowledge acquisition aspect, although some investigations, 
specifically those concerned with learning in problem-solving and transforming declarative 
instructions into effective actions, touch on aspects of both types of learning. Whereas 
knowledge acquisition clearly belongs in the realm of artificial intelligence research, a case 
could be made that skill refinement comes closer to non-symbolic processes such as those 
studied in adaptative control system. Hence, perhaps both forms of learning- (knowledge 
based and refinement learning) can be captured in artificial intelligence models.  

 
1.3 Classification of Machine Learning 
There are several areas of machine learning that could be exploited to solve the problems of 
email management and our approach implemented unsupervised machine learning method. 
Uunsupervised learning is a method of machine learning whereby the algorithm is 
presented with examples from the input space only and a model is fit to these observations. 
For example, a clustering algorithm would be a form of unsupervised learning.               
“Unsupervised learning is a method of machine learning where a model is fit to 
observations. It is distinguished from supervised learning by the fact that there is no a priori 
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output. In unsupervised learning, a data set of input objects is gathered. Unsupervised 
learning then typically treats input objects as a set of random variables. A joint density 
model is then built for the data set. The problem of unsupervised learning involved 
learning patterns in the input when no specific output values are supplied” according to 
Russell (Russell, 2003).  
In the unsupervised learning problem, we observe only the features and have no measurements 
of the outcome. Our task is rather to describe how the data are organized or clustered”. 
Hastie (Trevor Hastie, 2001)  explained that "In unsupervised learning or clustering there is no 
explicit teacher, and the system forms clusters or “natural groupings” of the input patterns. 
“Natural” is always defined explicitly or implicitly in the clustering system itself; and given 
a particular set of patterns or cost function, different clustering algorithms lead to different 
clusters. Often the user will set the hypothesized number of different clusters ahead of time, 
but how should this be done? How do we avoid inappropriate representations?" 
according to Duda (Richard O. Duda, 2000).                     
There are various categories in the field of artificial intelligence. The classifications of 
machine learning systems are:  
 

 Supervised Machine Learning: Supervised learning is a machine learning 
technique for learning a function from training data. The training data consist of 
pairs of input objects (typically vectors), and desired outputs. The output of the 
function can be a continuous value (called regression), or can predict a class label of 
the input object (called classification). The task of the supervised learner is to 
predict the value of the function for any valid input object after having seen a 
number of training examples (i.e. pairs of input and target output). To achieve this, 
the learner has to generalize from the presented data to unseen situations in a 
"reasonable" way (see inductive bias). (Compare with unsupervised learning.) 
Supervised learning is a machine learning technique whereby the algorithm is first 
presented with training data which consists of examples which include both the 
inputs and the desired outputs; thus enabling it to learn a function. The learner 
should then be able to generalize from the presented data to unseen examples." 
 by Mitchell (Mitchell, 2006). Supervised learning also implies we are given a 
training set of (X, Y) pairs by a “teacher”. We know (sometimes only 
approximately) the values of f for the m samples in the training set,   we assume 
that if we can find a hypothesis, h, that closely agrees with f for the members of  
then this hypothesis will be a good guess for f especially if   is large.  Curvefitting 
is a simple example of supervised learning of a function. Suppose we are given the 
values of a two-dimensional function.  f, at the four sample points shown by the 
solid circles in Figure 9.  We want to fit these four points with a function, h, drawn 
from the set, H, of second-degree functions.  We show there a two-dimensional 
parabolic surface above the 1x . 2x , plane that fits the points. This parabolic 
function, h, is our hypothesis about the function f, which produced the four 
samples. In this case, h   f at the four samples, but we need not have required 
exact matches. Read more in section 3.1. 

 Unsupervised Machine Learning: Unsupervised learning1 is a type of machine 
learning where manual labels of inputs are not used. It is distinguished from 
supervised learning approaches which learn how to perform a task, such as 
classification or regression, using a set of human prepared examples. 
.Unsupervised learning means we are only given the Xs and some (ultimate) 
feedback function on our performance. We simply have a training set of vectors 
without function values of them. The problem in this case, typically, is to partition 
the training set into subsets, 1 …. R , in some appropriate way.    

 
1.3.1 Classification of Machine Learning 
Classification of machine learning system could be implemented along many different 
dimensions and we have chosen these two dimensions: 
 

 Inference Learning:  This is a form of classification on the basis of underlying 
strategy that is involved.  These strategies will depend on the amount of inference 
the learning system performs on the information provided to the system. 
Now learning strategies are distinguished by the amount of inference the learner 
performs on the information provided. So, if a computer system performs email 
classification for example, it knowledge increases but this may not perform any 
inference on the new information, this means all cognitive efforts is on the part of 
the analyst or programmer. But if the machine learning classifier independently 
discovers new theories or adopt new concepts, this will perform a very substantial 
inference. This is what is called deriving knowledge from example or experiments or by 
observation. An example is: When a student wants to solve statistical problems in a 
text book – this is a process that involves inference but the solution is not to 
discover a brand new formula without guidance from a teacher or text book. So, as 
the amount of inference that the learner is capable of performing increases, the 
burdens placed on the teacher or on external environ decreases. According to Jaime 
(Jaime G. Carbonell, 1983) , (Anil Mathur, 1999) who stated that it is much more 
difficult to teach a person by explaining each steps in a complex task than by 
showing that person the way that similar tasks are usually done. It more difficult 
yet to programme a computer to perform a complex task than to instruct a person 
to perform the task; as programming requires explicit specification of all 
prerequisite details, whereas a person receiving instruction  can use prior 
knowledge and common sense to fill in most mundane details.  

 Knowledge Representation: This is a form of skill acquire by the learner on the 
basis of the type of representation of the knowledge.  

 
1.3.2 Existing Learning Systems 
There are many other existing learning systems that employ multiple strategies and 
knowledge representations and some have been applied to more than one.  In the 
knowledge based machine learning method, no inference is used but the learner display the 
transformation of knowledge in varieties of ways:  

                                                            
1 http://en.wikipedia.org/wiki/Unsupervised_learning 



Machine Learning Overview 15
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Russell (Russell, 2003).  
In the unsupervised learning problem, we observe only the features and have no measurements 
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“Natural” is always defined explicitly or implicitly in the clustering system itself; and given 
a particular set of patterns or cost function, different clustering algorithms lead to different 
clusters. Often the user will set the hypothesized number of different clusters ahead of time, 
but how should this be done? How do we avoid inappropriate representations?" 
according to Duda (Richard O. Duda, 2000).                     
There are various categories in the field of artificial intelligence. The classifications of 
machine learning systems are:  
 

 Supervised Machine Learning: Supervised learning is a machine learning 
technique for learning a function from training data. The training data consist of 
pairs of input objects (typically vectors), and desired outputs. The output of the 
function can be a continuous value (called regression), or can predict a class label of 
the input object (called classification). The task of the supervised learner is to 
predict the value of the function for any valid input object after having seen a 
number of training examples (i.e. pairs of input and target output). To achieve this, 
the learner has to generalize from the presented data to unseen situations in a 
"reasonable" way (see inductive bias). (Compare with unsupervised learning.) 
Supervised learning is a machine learning technique whereby the algorithm is first 
presented with training data which consists of examples which include both the 
inputs and the desired outputs; thus enabling it to learn a function. The learner 
should then be able to generalize from the presented data to unseen examples." 
 by Mitchell (Mitchell, 2006). Supervised learning also implies we are given a 
training set of (X, Y) pairs by a “teacher”. We know (sometimes only 
approximately) the values of f for the m samples in the training set,   we assume 
that if we can find a hypothesis, h, that closely agrees with f for the members of  
then this hypothesis will be a good guess for f especially if   is large.  Curvefitting 
is a simple example of supervised learning of a function. Suppose we are given the 
values of a two-dimensional function.  f, at the four sample points shown by the 
solid circles in Figure 9.  We want to fit these four points with a function, h, drawn 
from the set, H, of second-degree functions.  We show there a two-dimensional 
parabolic surface above the 1x . 2x , plane that fits the points. This parabolic 
function, h, is our hypothesis about the function f, which produced the four 
samples. In this case, h   f at the four samples, but we need not have required 
exact matches. Read more in section 3.1. 

 Unsupervised Machine Learning: Unsupervised learning1 is a type of machine 
learning where manual labels of inputs are not used. It is distinguished from 
supervised learning approaches which learn how to perform a task, such as 
classification or regression, using a set of human prepared examples. 
.Unsupervised learning means we are only given the Xs and some (ultimate) 
feedback function on our performance. We simply have a training set of vectors 
without function values of them. The problem in this case, typically, is to partition 
the training set into subsets, 1 …. R , in some appropriate way.    

 
1.3.1 Classification of Machine Learning 
Classification of machine learning system could be implemented along many different 
dimensions and we have chosen these two dimensions: 
 

 Inference Learning:  This is a form of classification on the basis of underlying 
strategy that is involved.  These strategies will depend on the amount of inference 
the learning system performs on the information provided to the system. 
Now learning strategies are distinguished by the amount of inference the learner 
performs on the information provided. So, if a computer system performs email 
classification for example, it knowledge increases but this may not perform any 
inference on the new information, this means all cognitive efforts is on the part of 
the analyst or programmer. But if the machine learning classifier independently 
discovers new theories or adopt new concepts, this will perform a very substantial 
inference. This is what is called deriving knowledge from example or experiments or by 
observation. An example is: When a student wants to solve statistical problems in a 
text book – this is a process that involves inference but the solution is not to 
discover a brand new formula without guidance from a teacher or text book. So, as 
the amount of inference that the learner is capable of performing increases, the 
burdens placed on the teacher or on external environ decreases. According to Jaime 
(Jaime G. Carbonell, 1983) , (Anil Mathur, 1999) who stated that it is much more 
difficult to teach a person by explaining each steps in a complex task than by 
showing that person the way that similar tasks are usually done. It more difficult 
yet to programme a computer to perform a complex task than to instruct a person 
to perform the task; as programming requires explicit specification of all 
prerequisite details, whereas a person receiving instruction  can use prior 
knowledge and common sense to fill in most mundane details.  

 Knowledge Representation: This is a form of skill acquire by the learner on the 
basis of the type of representation of the knowledge.  

 
1.3.2 Existing Learning Systems 
There are many other existing learning systems that employ multiple strategies and 
knowledge representations and some have been applied to more than one.  In the 
knowledge based machine learning method, no inference is used but the learner display the 
transformation of knowledge in varieties of ways:  

                                                            
1 http://en.wikipedia.org/wiki/Unsupervised_learning 
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 Learning by being programmed: When an algorithm or code is written to 
perform specific task. E.g. a code is written as a guessing game for the type of 
animal. Such a programme could be modified by external entity.  

 Learning by memorisation:  This is by memorising given facts or data with no 
inference drawn from the incoming information or data.  

 Learning from examples: This is a special case of inductive learning. Given a 
set of examples and counterexamples of a concept, the learner induces a 
general concept description that describes all of the positive examples and 
none of the counterexamples. Learning from examples is a method has been 
heavily investigated in artificial intelligence field. The amount of inference 
perform by the learner is much greater than in learning from instructions, 
(Anil Mathur, 1999), (Jaime G. Carbonell, 1983).   

 Learning from Observation: This is an unsupervised learning approach and is 
a very general form of inductive learning that includes discovery systems, 
theory formation tasks, the creation of classification criteria to form taxonomic 
hierarchies and similar task to be performed without benefit of an external 
teacher. Unsupervised learning requires the learner to perform more inference 
than any approach as previously explained.  The learner is not provided with a 
set if data or instance of a particular concept. The above classification of 
learning strategies should help one to compare various learning systems in 
terms of their underlying mechanisms, in terms of the available external 
source of information and in terms of the degree to which they reply on pre-
organised knowledge. Read more in section 3.2. 

 
1.4 Machine Learning Applications 
The other aspect for classifying learning systems is the area of application which gives a 
new dimension for machine learning. Below are areas to which various existing learning 
systems have been applied. They are: 

1) Computer Programming 
2) Game playing (chess, poker, and so on) 
3) Image recognition, Speech recognition 
4) Medical diagnosis 
5) Agriculture, Physics 
6) Email management, Robotics 
7) Music 
8) Mathematics 
9) Natural Language Processing and many more. 
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 Learning by being programmed: When an algorithm or code is written to 
perform specific task. E.g. a code is written as a guessing game for the type of 
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perform by the learner is much greater than in learning from instructions, 
(Anil Mathur, 1999), (Jaime G. Carbonell, 1983).   

 Learning from Observation: This is an unsupervised learning approach and is 
a very general form of inductive learning that includes discovery systems, 
theory formation tasks, the creation of classification criteria to form taxonomic 
hierarchies and similar task to be performed without benefit of an external 
teacher. Unsupervised learning requires the learner to perform more inference 
than any approach as previously explained.  The learner is not provided with a 
set if data or instance of a particular concept. The above classification of 
learning strategies should help one to compare various learning systems in 
terms of their underlying mechanisms, in terms of the available external 
source of information and in terms of the degree to which they reply on pre-
organised knowledge. Read more in section 3.2. 

 
1.4 Machine Learning Applications 
The other aspect for classifying learning systems is the area of application which gives a 
new dimension for machine learning. Below are areas to which various existing learning 
systems have been applied. They are: 

1) Computer Programming 
2) Game playing (chess, poker, and so on) 
3) Image recognition, Speech recognition 
4) Medical diagnosis 
5) Agriculture, Physics 
6) Email management, Robotics 
7) Music 
8) Mathematics 
9) Natural Language Processing and many more. 

 
2. References 
 

Allix, N. M. (2003, April). Epistemology And Knowledge Management Concepts And 
Practices. Journal of Knowledge Management Practice . 

Alpaydin, E. (2004). Introduction to Machine Learning. Massachusetts, USA: MIT Press. 
Anderson, J. R. (1995). Learning and Memory. Wiley, New York, USA. 

Anil Mathur, G. P. (1999). Socialization influences on preparation for later life. Journal of 
Marketing Practice: Applied Marketing Science , 5 (6,7,8), 163 - 176. 

Ashby, W. R. (1960). Design of a Brain, The Origin of Adaptive Behaviour. John Wiley and Son. 
Batista, G. &. (2003). An Analysis of Four Missing Data Treatment Methods for Suppervised 

Learning. Applied Artificial Intelligence , 17, 519-533. 
Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford, England: Oxford 

University Press. 
Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). 

New York, New York: Springer Science and Business Media. 
Block H, D. (1961). The Perceptron: A Model of Brian Functioning. 34 (1), 123-135. 
Carling, A. (1992). Introducing Neural Networks . Wilmslow, UK: Sigma Press. 
D. Michie, D. J. (1994). Machine Learning, Neural and Statistical Classification. Prentice Hall Inc. 
Fausett, L. (19994). Fundamentals of Neural Networks. New York: Prentice Hall. 
Forsyth, R. S. (1990). The strange story of the Perceptron. Artificial Intelligence Review , 4 (2), 

147-155. 
Friedberg, R. M. (1958). A learning machine: Part, 1. IBM Journal , 2-13. 
Ghahramani, Z. (2008). Unsupervised learning algorithms are designed to extract structure 

from data. 178, pp. 1-8. IOS Press. 
Gillies, D. (1996). Artificial Intelligence and Scientific Method. OUP Oxford. 
Haykin, S. (19994). Neural Networks: A Comprehensive Foundation. New York: Macmillan 

Publishing. 
Hodge, V. A. (2004). A Survey of Outlier Detection Methodologies. Artificial Intelligence Review, 

22 (2), 85-126. 
Holland, J. (1980). Adaptive Algorithms for Discovering and Using General Patterns in 

Growing Knowledge Bases Policy Analysis and Information Systems. 4 (3). 
Hunt, E. B. (1966). Experiment in Induction. 
Ian H. Witten, E. F. (2005). Data Mining Practical Machine Learning and Techniques (Second 

edition ed.). Morgan Kaufmann. 
Jaime G. Carbonell, R. S. (1983). Machine Learning: A Historical and Methodological Analysis. 

Association for the Advancement of Artificial Intelligence , 4 (3), 1-10. 
Kohonen, T. (1997). Self-Organizating Maps. 
Luis Gonz, l. A. (2005). Unified dual for bi-class SVM approaches. Pattern Recognition , 38 (10), 

1772-1774. 
McCulloch, W. S. (1943). A logical calculus of the ideas immanent in nervous activity. Bull. 

Math. Biophysics , 115-133. 
Mitchell, T. M. (2006). The Discipline of Machine Learning. Machine Learning Department 

technical report CMU-ML-06-108, Carnegie Mellon University. 
Mooney, R. J. (2000). Learning Language in Logic. In L. N. Science, Learning for Semantic 

Interpretation: Scaling Up without Dumbing Down (pp. 219-234). Springer Berlin / 
Heidelberg. 

Mostow, D. (1983). Transforming declarative advice into effective procedures: a heuristic search 
cxamplc In I?. S. Michalski,. Tioga Press. 

Nilsson, N. J. (1982). Principles of Artificial Intelligence (Symbolic Computation / Artificial 
Intelligence). Springer. 

Oltean, M. (2005). Evolving Evolutionary Algorithms Using Linear Genetic Programming. 13 
(3), 387 - 410 . 



New Advances in Machine Learning18

Orlitsky, A., Santhanam, N., Viswanathan, K., & Zhang, J. (2005). Convergence of profile based 
estimators. Proceedings of International Symposium on Information Theory. Proceedings. 
International Symposium on, pp. 1843 - 1847. Adelaide, Australia: IEEE. 

Patterson, D. (19996). Artificial Neural Networks. Singapore: Prentice Hall. 
R. S. Michalski, T. J. (1983). Learning from Observation: Conceptual Clustering. TIOGA Publishing 

Co. 
Rajesh P. N. Rao, B. A. (2002). Probabilistic Models of the Brain. MIT Press. 
Rashevsky, N. (1948). Mathematical Biophysics:Physico-Mathematical Foundations of Biology. 

Chicago: Univ. of Chicago Press. 
Richard O. Duda, P. E. (2000). Pattern Classification (2nd Edition ed.). 
Richard S. Sutton, A. G. (1998). Reinforcement Learning. MIT Press. 
Ripley, B. (1996). Pattern Recognition and Neural Networks. Cambridge University Press. 
Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and 

organization in the brain . Psychological Review , 65 (6), 386-408. 
Russell, S. J. (2003). Artificial Intelligence: A Modern Approach (2nd Edition ed.). Upper Saddle 

River, NJ, NJ, USA: Prentice Hall. 
Ryszard S. Michalski, J. G. (1955). Machine Learning: An Artificial Intelligence Approach (Volume 

I). Morgan Kaufmann . 
Ryszard S. Michalski, J. G. (1955). Machine Learning: An Artificial Intelligence Approach.  
Selfridge, O. G. (1959). Pandemonium: a paradigm for learning. In The mechanisation of thought 

processes. H.M.S.O., London. London. 
Sleeman, D. H. (1983). Inferring Student Models for Intelligent CAI. Machine Learning. Tioga Press. 
Tapas Kanungo, D. M. (2002). A local search approximation algorithm for k-means clustering. 

Proceedings of the eighteenth annual symposium on Computational geometry (pp. 10-18). 
Barcelona, Spain : ACM Press. 

Timothy Jason Shepard, P. J. (1998). Decision Fusion Using a Multi-Linear Classifier . In 
Proceedings of the International Conference on Multisource-Multisensor Information 
Fusion.  

Tom, M. (1997). Machibe Learning. Machine Learning, Tom Mitchell, McGraw Hill, 1997: 
McGraw Hill. 

Trevor Hastie, R. T. (2001). The Elements of Statistical Learning. New york, NY, USA: Springer 
Science and Business Media. 

Widrow, B. W. (2007). Adaptive Inverse Control: A Signal Processing Approach. Wiley-IEEE Press. 
Y. Chali, S. R. (2009). Complex Question Answering: Unsupervised Learning Approaches and 

Experiments. Journal of Artificial Intelligent Research , 1-47. 
Yu, L. L. (2004, October). Efficient feature Selection via Analysis of Relevance and Redundacy. 

JMLR , 1205-1224. 
Zhang, S. Z. (2002). Data Preparation for Data Mining. Applied Artificial Intelligence. 17, 375 - 

381. 
 



Types of Machine Learning Algorithms 19

Types of Machine Learning Algorithms

Taiwo Oladipupo Ayodele

X 
 

Types of Machine Learning Algorithms 
 

Taiwo Oladipupo Ayodele 
University of Portsmouth 

United Kingdom 

 
1. Machine Learning: Algorithms Types 
 

Machine learning algorithms are organized into taxonomy, based on the desired outcome of 
the algorithm. Common algorithm types include: 
 

• Supervised learning --- where the algorithm generates a function that maps inputs 
to desired outputs. One standard formulation of the supervised learning task is the 
classification problem: the learner is required to learn (to approximate the behavior 
of) a function which maps a vector into one of several classes by looking at several 
input-output examples of the function. 

• Unsupervised learning --- which models a set of inputs: labeled examples are not 
available. 

• Semi-supervised learning --- which combines both labeled and unlabeled examples 
to generate an appropriate function or classifier. 

• Reinforcement learning --- where the algorithm learns a policy of how to act given 
an observation of the world. Every action has some impact in the environment, and 
the environment provides feedback that guides the learning algorithm. 

• Transduction --- similar to supervised learning, but does not explicitly construct a 
function: instead, tries to predict new outputs based on training inputs, training 
outputs, and new inputs. 

• Learning to learn --- where the algorithm learns its own inductive bias based on 
previous experience. 
 

The performance and computational analysis of machine learning algorithms is a branch of 
statistics known as computational learning theory. 
Machine learning is about designing algorithms that allow a computer to learn. Learning is 
not necessarily involves consciousness but learning is a matter of finding statistical 
regularities or other patterns in the data. Thus, many machine learning algorithms will 
barely resemble how human might approach a learning task. However, learning algorithms 
can give insight into the relative difficulty of learning in different environments. 
 
 
 

3
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1.1 Supervised Learning Approach 
Supervised learning1

Supervised learning

 is fairly common in classification problems because the goal is often to 
get the computer to learn a classification system that we have created. Digit recognition, 
once again, is a common example of classification learning. More generally, classification 
learning is appropriate for any problem where deducing a classification is useful and the 
classification is easy to determine. In some cases, it might not even be necessary to give pre-
determined classifications to every instance of a problem if the agent can work out the 
classifications for itself. This would be an example of unsupervised learning in a 
classification context.  

2

 
Fig. 1. Examples of Supervised and Unsupervised Learning 
 

 often leaves the probability for inputs undefined. This model is not 
needed as long as the inputs are available, but if some of the input values are missing, it is 
not possible to infer anything about the outputs. Unsupervised learning, all the observations 
are assumed to be caused by latent variables, that is, the observations is assumed to be at the 
end of the causal chain. Examples of supervised learning and unsupervised learning are 
shown in the figure 1 below:  
 

Supervised learning3

be used to generalize from new instances. The process of applying supervised ML to a real-
world problem is described in Figure F. The first step is collecting the dataset. If a requisite 
expert is available, then s/he could suggest which fields (attributes, features) are the most 

 is the most common technique for training neural networks and 
decision trees. Both of these techniques are highly dependent on the information given by 
the pre-determined classifications. In the case of neural networks, the classification is used 
to determine the error of the network and then adjust the network to minimize it, and in 
decision trees, the classifications are used to determine what attributes provide the most 
information that can be used to solve the classification puzzle. We'll look at both of these in 
more detail, but for now, it should be sufficient to know that both of these examples thrive 
on having some "supervision" in the form of pre-determined classifications. 
Inductive machine learning is the process of learning a set of rules from instances (examples 
in a training set), or more generally speaking, creating a classifier that can 

                                                           
1 http://www.aihorizon.com/essays/generalai/supervised_unsupervised_machine_learning.htm 
2 http://www.cis.hut.fi/harri/thesis/valpola_thesis/node34.html 
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informative. If not, then the simplest method is that of “brute-force,” which means 
measuring everything available in the hope that the right (informative, relevant) features 
can be isolated. However, a dataset collected by the “brute-force” method is not directly 
suitable for induction. It contains in most cases noise and missing feature values, and 
therefore requires significant pre-processing according to Zhang et al (Zhang, 2002).  
The second step is the data preparation and data pre-processing. Depending on the 
circumstances, researchers have a number of methods to choose from to handle missing data 
(Batista, 2003). Hodge et al (Hodge, 2004) , have recently introduced a survey of 
contemporary techniques for outlier (noise) detection. These researchers have identified the 
techniques’ advantages and disadvantages. Instance selection is not only used to handle 
noise but to cope with the infeasibility of learning from very large datasets. Instance 
selection in these datasets is an optimization problem that attempts to maintain the mining 
quality while minimizing the sample size.  It reduces data and enables a data mining 
algorithm to function and work effectively with very large datasets. There is a variety of 
procedures for sampling instances from a large dataset. See figure 2 below. 
Feature subset selection is the process of identifying and removing as many irrelevant and 
redundant features as possible (Yu, 2004) . This reduces the dimensionality of the data and 
enables data mining algorithms to operate faster and more effectively. The fact that many 
features depend on one another often unduly influences the accuracy of supervised ML 
classification models. This problem can be addressed by constructing new features from the 
basic feature set. This technique is called feature construction/transformation. These newly 
generated features may lead to the creation of more concise and accurate classifiers. In 
addition, the discovery of meaningful features contributes to better comprehensibility of the 
produced classifier, and a better understanding of the learned concept.Speech recognition 
using hidden Markov models and Bayesian networks relies on some elements of 
supervision as well in order to adjust parameters to, as usual, minimize the error on the 
given inputs.Notice something important here: in the classification problem, the goal of the 
learning algorithm is to minimize the error with respect to the given inputs. These inputs, 
often called the "training set", are the examples from which the agent tries to learn. But 
learning the training set well is not necessarily the best thing to do. For instance, if I tried to 
teach you exclusive-or, but only showed you combinations consisting of one true and one 
false, but never both false or both true, you might learn the rule that the answer is always 
true. Similarly, with machine learning algorithms, a common problem is over-fitting the 
data and essentially memorizing the training set rather than learning a more general 
classification technique. As you might imagine, not all training sets have the inputs 
classified correctly. This can lead to problems if the algorithm used is powerful enough to 
memorize even the apparently "special cases" that don't fit the more general principles. This, 
too, can lead to over fitting, and it is a challenge to find algorithms that are both powerful 
enough to learn complex functions and robust enough to produce generalisable results. 
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1.1 Supervised Learning Approach 
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algorithm to function and work effectively with very large datasets. There is a variety of 
procedures for sampling instances from a large dataset. See figure 2 below. 
Feature subset selection is the process of identifying and removing as many irrelevant and 
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features depend on one another often unduly influences the accuracy of supervised ML 
classification models. This problem can be addressed by constructing new features from the 
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data and essentially memorizing the training set rather than learning a more general 
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Fig. 2. Machine Learning Supervise Process 

 
1.2 Unsupervised learning 
Unsupervised learning4

                                                           
4 

 seems much harder: the goal is to have the computer learn how to 
do something that we don't tell it how to do! There are actually two approaches to 
unsupervised learning. The first approach is to teach the agent not by giving explicit 
categorizations, but by using some sort of reward system to indicate success. Note that this 
type of training will generally fit into the decision problem framework because the goal is 
not to produce a classification but to make decisions that maximize rewards. This approach 
nicely generalizes to the real world, where agents might be rewarded for doing certain 
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actions and punished for doing others. Often, a form of reinforcement learning can be used 
for unsupervised learning, where the agent bases its actions on the previous rewards and 
punishments without necessarily even learning any information about the exact ways that 
its actions affect the world. In a way, all of this information is unnecessary because by 
learning a reward function, the agent simply knows what to do without any processing 
because it knows the exact reward it expects to achieve for each action it could take. This can 
be extremely beneficial in cases where calculating every possibility is very time consuming 
(even if all of the transition probabilities between world states were known). On the other 
hand, it can be very time consuming to learn by, essentially, trial and error. But this kind of 
learning can be powerful because it assumes no pre-discovered classification of examples. In 
some cases, for example, our classifications may not be the best possible. One striking 
exmaple is that the conventional wisdom about the game of backgammon was turned on its 
head when a series of computer programs (neuro-gammon and TD-gammon) that learned 
through unsupervised learning became stronger than the best human chess players merely 
by playing themselves over and over. These programs discovered some principles that 
surprised the backgammon experts and performed better than backgammon programs 
trained on pre-classified examples. A second type of unsupervised learning is called 
clustering. In this type of learning, the goal is not to maximize a utility function, but simply 
to find similarities in the training data. The assumption is often that the clusters discovered 
will match reasonably well with an intuitive classification. For instance, clustering 
individuals based on demographics might result in a clustering of the wealthy in one group 
and the poor in another. Although the algorithm won't have names to assign to these 
clusters, it can produce them and then use those clusters to assign new examples into one or 
the other of the clusters. This is a data-driven approach that can work well when there is 
sufficient data; for instance, social information filtering algorithms, such as those that 
Amazon.com use to recommend books, are based on the principle of finding similar groups 
of people and then assigning new users to groups. In some cases, such as with social 
information filtering, the information about other members of a cluster (such as what books 
they read) can be sufficient for the algorithm to produce meaningful results. In other cases, it 
may be the case that the clusters are merely a useful tool for a human analyst. 
Unfortunately, even unsupervised learning suffers from the problem of overfitting the 
training data. There's no silver bullet to avoiding the problem because any algorithm that 
can learn from its inputs needs to be quite powerful. 
Unsupervised learning algorithms according to Ghahramani (Ghahramani, 2008) are 
designed to extract structure from data samples. The quality of a structure is measured by a 
cost function which is usually minimized to infer optimal parameters characterizing the 
hidden structure in the data. Reliable and robust inference requires a guarantee that 
extracted structures are typical for the data source, i.e., similar structures have to be 
extracted from a second sample set of the same data source. Lack of robustness is known as 
over fitting from the statistics and the machine learning literature. In this talk I characterize 
the over fitting phenomenon for a class of histogram clustering models which play a 
prominent role in information retrieval, linguistic and computer vision applications. 
Learning algorithms with robustness to sample fluctuations are derived from large 
deviation results and the maximum entropy principle for the learning process. 
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actions and punished for doing others. Often, a form of reinforcement learning can be used 
for unsupervised learning, where the agent bases its actions on the previous rewards and 
punishments without necessarily even learning any information about the exact ways that 
its actions affect the world. In a way, all of this information is unnecessary because by 
learning a reward function, the agent simply knows what to do without any processing 
because it knows the exact reward it expects to achieve for each action it could take. This can 
be extremely beneficial in cases where calculating every possibility is very time consuming 
(even if all of the transition probabilities between world states were known). On the other 
hand, it can be very time consuming to learn by, essentially, trial and error. But this kind of 
learning can be powerful because it assumes no pre-discovered classification of examples. In 
some cases, for example, our classifications may not be the best possible. One striking 
exmaple is that the conventional wisdom about the game of backgammon was turned on its 
head when a series of computer programs (neuro-gammon and TD-gammon) that learned 
through unsupervised learning became stronger than the best human chess players merely 
by playing themselves over and over. These programs discovered some principles that 
surprised the backgammon experts and performed better than backgammon programs 
trained on pre-classified examples. A second type of unsupervised learning is called 
clustering. In this type of learning, the goal is not to maximize a utility function, but simply 
to find similarities in the training data. The assumption is often that the clusters discovered 
will match reasonably well with an intuitive classification. For instance, clustering 
individuals based on demographics might result in a clustering of the wealthy in one group 
and the poor in another. Although the algorithm won't have names to assign to these 
clusters, it can produce them and then use those clusters to assign new examples into one or 
the other of the clusters. This is a data-driven approach that can work well when there is 
sufficient data; for instance, social information filtering algorithms, such as those that 
Amazon.com use to recommend books, are based on the principle of finding similar groups 
of people and then assigning new users to groups. In some cases, such as with social 
information filtering, the information about other members of a cluster (such as what books 
they read) can be sufficient for the algorithm to produce meaningful results. In other cases, it 
may be the case that the clusters are merely a useful tool for a human analyst. 
Unfortunately, even unsupervised learning suffers from the problem of overfitting the 
training data. There's no silver bullet to avoiding the problem because any algorithm that 
can learn from its inputs needs to be quite powerful. 
Unsupervised learning algorithms according to Ghahramani (Ghahramani, 2008) are 
designed to extract structure from data samples. The quality of a structure is measured by a 
cost function which is usually minimized to infer optimal parameters characterizing the 
hidden structure in the data. Reliable and robust inference requires a guarantee that 
extracted structures are typical for the data source, i.e., similar structures have to be 
extracted from a second sample set of the same data source. Lack of robustness is known as 
over fitting from the statistics and the machine learning literature. In this talk I characterize 
the over fitting phenomenon for a class of histogram clustering models which play a 
prominent role in information retrieval, linguistic and computer vision applications. 
Learning algorithms with robustness to sample fluctuations are derived from large 
deviation results and the maximum entropy principle for the learning process. 
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Unsupervised learning has produced many successes, such as world-champion calibre 
backgammon programs and even machines capable of driving cars! It can be a powerful 
technique when there is an easy way to assign values to actions. Clustering can be useful 
when there is enough data to form clusters (though this turns out to be difficult at times) 
and especially when additional data about members of a cluster can be used to produce 
further results due to dependencies in the data. Classification learning is powerful when the 
classifications are known to be correct (for instance, when dealing with diseases, it's 
generally straight-forward to determine the design after the fact by an autopsy), or when the 
classifications are simply arbitrary things that we would like the computer to be able to 
recognize for us. Classification learning is often necessary when the decisions made by the 
algorithm will be required as input somewhere else. Otherwise, it wouldn't be easy for 
whoever requires that input to figure out what it means. Both techniques can be valuable 
and which one you choose should depend on the circumstances--what kind of problem is 
being solved, how much time is allotted to solving it (supervised learning or clustering is 
often faster than reinforcement learning techniques), and whether supervised learning is 
even possible.  

 
1.3 Algorithm Types 
In the area of supervised learning which deals much with classification. These are the 
algorithms types: 
 

• Linear Classifiers 
 Logical Regression 
 Naïve Bayes Classifier 
 Perceptron 
 Support Vector Machine 

• Quadratic Classifiers 
• K-Means Clustering 
• Boosting 
• Decision Tree 

 Random Forest 
• Neural networks 
• Bayesian Networks 

 
Linear Classifiers: In machine learning, the goal of classification is to group items that have 
similar feature values, into groups. Timothy et al (Timothy Jason Shepard, 1998)  stated that 
a linear classifier achieves this by making a classification decision based on the value of 
the linear combination of the features. If the input feature vector to the classifier is 
a real vector , then the output score is 

 

where  is a real vector of weights and f is a function that converts the dot product of the 
two vectors into the desired output. The weight vector  is learned from a set of labelled 
training samples. Often f is a simple function that maps all values above a certain threshold 
to the first class and all other values to the second class. A more complex f might give the 
probability that an item belongs to a certain class. 
For a two-class classification problem, one can visualize the operation of a linear classifier as 
splitting a high-dimensional input space with a hyperplane: all points on one side of the 
hyper plane are classified as "yes", while the others are classified as "no". A linear classifier is 
often used in situations where the speed of classification is an issue, since it is often the 
fastest classifier, especially when  is sparse. However, decision trees can be faster. Also, 
linear classifiers often work very well when the number of dimensions in  is large, as 
in document classification, where each element in  is typically the number of counts of a 
word in a document (see document-term matrix). In such cases, the classifier should be well-
regularized. 
 

• Support Vector Machine: A Support Vector Machine as stated by Luis et al 
(Luis Gonz, 2005) (SVM) performs classification by constructing an N-
dimensional hyper plane that optimally separates the data into two 
categories. SVM models are closely related to neural networks. In fact, a SVM 
model using a sigmoid kernel function is equivalent to a two-
layer, perceptron neural network. 
Support Vector Machine (SVM) models are a close cousin to classical 
multilayer perceptron neural networks. Using a kernel function, SVM’s are 
an alternative training method for polynomial, radial basis function and 
multi-layer perceptron classifiers in which the weights of the network are 
found by solving a quadratic programming problem with linear constraints, 
rather than by solving a non-convex, unconstrained minimization problem as 
in standard neural network training. 
In the parlance of SVM literature, a predictor variable is called an attribute, 
and a transformed attribute that is used to define the hyper plane is called 
a feature. The task of choosing the most suitable representation is known 
as feature selection. A set of features that describes one case (i.e., a row of 
predictor values) is called a vector. So the goal of SVM modelling is to find 
the optimal hyper plane that separates clusters of vector in such a way that 
cases with one category of the target variable are on one side of the plane and 
cases with the other category are on the other size of the plane. The vectors 
near the hyper plane are the support vectors. The figure below presents an 
overview of the SVM process. 
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in document classification, where each element in  is typically the number of counts of a 
word in a document (see document-term matrix). In such cases, the classifier should be well-
regularized. 
 

• Support Vector Machine: A Support Vector Machine as stated by Luis et al 
(Luis Gonz, 2005) (SVM) performs classification by constructing an N-
dimensional hyper plane that optimally separates the data into two 
categories. SVM models are closely related to neural networks. In fact, a SVM 
model using a sigmoid kernel function is equivalent to a two-
layer, perceptron neural network. 
Support Vector Machine (SVM) models are a close cousin to classical 
multilayer perceptron neural networks. Using a kernel function, SVM’s are 
an alternative training method for polynomial, radial basis function and 
multi-layer perceptron classifiers in which the weights of the network are 
found by solving a quadratic programming problem with linear constraints, 
rather than by solving a non-convex, unconstrained minimization problem as 
in standard neural network training. 
In the parlance of SVM literature, a predictor variable is called an attribute, 
and a transformed attribute that is used to define the hyper plane is called 
a feature. The task of choosing the most suitable representation is known 
as feature selection. A set of features that describes one case (i.e., a row of 
predictor values) is called a vector. So the goal of SVM modelling is to find 
the optimal hyper plane that separates clusters of vector in such a way that 
cases with one category of the target variable are on one side of the plane and 
cases with the other category are on the other size of the plane. The vectors 
near the hyper plane are the support vectors. The figure below presents an 
overview of the SVM process. 
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A Two-Dimensional Example 
Before considering N-dimensional hyper planes, let’s look at a simple 2-dimensional 
example. Assume we wish to perform a classification, and our data has a categorical target 
variable with two categories. Also assume that there are two predictor variables with 
continuous values. If we plot the data points using the value of one predictor on the X axis 
and the other on the Y axis we might end up with an image such as shown below. One 
category of the target variable is represented by rectangles while the other category is 
represented by ovals. 

 
In this idealized example, the cases with one category are in the lower left corner and the 
cases with the other category are in the upper right corner; the cases are completely 
separated. The SVM analysis attempts to find a 1-dimensional hyper plane (i.e. a line) that 
separates the cases based on their target categories. There are an infinite number of possible 
lines; two candidate lines are shown above. The question is which line is better, and how do 
we define the optimal line. 
The dashed lines drawn parallel to the separating line mark the distance between the 
dividing line and the closest vectors to the line. The distance between the dashed lines is 
called the margin. The vectors (points) that constrain the width of the margin are the support 
vectors. The following figure illustrates this. 

 
 

An SVM analysis (Luis Gonz, 2005) finds the line (or, in general, hyper plane) that is 
oriented so that the margin between the support vectors is maximized. In the figure above, 
the line in the right panel is superior to the line in the left panel. 
If all analyses consisted of two-category target variables with two predictor variables, and 
the cluster of points could be divided by a straight line, life would be easy. Unfortunately, 
this is not generally the case, so SVM must deal with (a) more than two predictor variables, 
(b) separating the points with non-linear curves, (c) handling the cases where clusters 
cannot be completely separated, and (d) handling classifications with more than two 
categories.  
In this chapter, we shall explain three main machine learning techniques with their 
examples and how they perform in reality. These are: 
 

• K-Means Clustering 
• Neural Network 
• Self Organised Map 

 
1.3.1 K-Means Clustering 
 The basic step of k-means clustering is uncomplicated. In the beginning we determine 
number of cluster K and we assume the centre of these clusters. We can take any random 
objects as the initial centre or the first K objects in sequence can also serve as the initial 
centre. Then the K means algorithm will do the three steps below until convergence. 
Iterate until stable (= no object move group): 

1. Determine the centre coordinate 

2. Determine the distance of each object to the centre 

3. Group the object based on minimum distance 

The Figure 3 shows a K- means flow diagram  
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this is not generally the case, so SVM must deal with (a) more than two predictor variables, 
(b) separating the points with non-linear curves, (c) handling the cases where clusters 
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In this chapter, we shall explain three main machine learning techniques with their 
examples and how they perform in reality. These are: 
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1.3.1 K-Means Clustering 
 The basic step of k-means clustering is uncomplicated. In the beginning we determine 
number of cluster K and we assume the centre of these clusters. We can take any random 
objects as the initial centre or the first K objects in sequence can also serve as the initial 
centre. Then the K means algorithm will do the three steps below until convergence. 
Iterate until stable (= no object move group): 

1. Determine the centre coordinate 

2. Determine the distance of each object to the centre 

3. Group the object based on minimum distance 

The Figure 3 shows a K- means flow diagram  
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Fig. 3. K-means iteration 
 
K-means (Bishop C. M., 1995)  and (Tapas Kanungo, 2002) is one of the simplest 
unsupervised learning algorithms that solve the well known clustering problem. The 
procedure follows a simple and easy way to classify a given data set through a certain 
number of clusters (assume k clusters) fixed a priori. The main idea is to define k centroids, 
one for each cluster. These centroids shoud be placed in a cunning way because of different 
location causes different result. So, the better choice is to place them as much as possible far 
away from each other. The next step is to take each point belonging to a given data set and 
associate it to the nearest centroid. When no point is pending, the first step is completed and 
an early groupage is done. At this point we need to re-calculate k new centroids as 
barycenters of the clusters resulting from the previous step. After we have these k new 
centroids, a new binding has to be done between the same data set points and the nearest 
new centroid. A loop has been generated. As a result of this loop we may notice that the k 
centroids change their location step by step until no more changes are done. In other words 
centroids do not move any more. 
Finally, this algorithm aims at minimizing an objective function, in this case a squared error 
function. The objective function 

, ,

where is a chosen distance measure between a data point and the cluster 

centre , is an indicator of the distance of the n data points from their respective cluster 
centres. 
The algorithm in figure 4 is composed of the following steps: 
 

1. Place K points into the space represented by the objects that 

are being clustered. These points represent initial group 

centroids. 

2. Assign each object to the group that has the closest 

centroid. 

3. When all objects have been assigned, recalculate the 

positions of the K centroids. 

4. Repeat Steps 2 and 3 until the centroids no longer move. 

This produces a separation of the objects into groups from 

which the metric to be minimized can be calculated. 

 
Although it can be proved that the procedure will always terminate, the k-means algorithm 
does not necessarily find the most optimal configuration, corresponding to the global 
objective function minimum. The algorithm is also significantly sensitive to the initial 
randomly selected cluster centres. The k-means algorithm can be run multiple times to 
reduce this effect. K-means is a simple algorithm that has been adapted to many problem 
domains. As we are going to see, it is a good candidate for extension to work with fuzzy 
feature vectors.  
An example 
Suppose that we have n sample feature vectors x1, x2, ..., xn all from the same class, and we 
know that they fall into k compact clusters, k < n. Let mi be the mean of the vectors in cluster 
i. If the clusters are well separated, we can use a minimum-distance classifier to separate 
them. That is, we can say that x is in cluster i if || x - mi || is the minimum of all the k 
distances. This suggests the following procedure for finding the k means: 
 

• Make initial guesses for the means m1, m2, ..., mk 
• Until there are no changes in any mean 
• Use the estimated means to classify the samples into clusters  
• For i from 1 to k  
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Fig. 3. K-means iteration 
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Although it can be proved that the procedure will always terminate, the k-means algorithm 
does not necessarily find the most optimal configuration, corresponding to the global 
objective function minimum. The algorithm is also significantly sensitive to the initial 
randomly selected cluster centres. The k-means algorithm can be run multiple times to 
reduce this effect. K-means is a simple algorithm that has been adapted to many problem 
domains. As we are going to see, it is a good candidate for extension to work with fuzzy 
feature vectors.  
An example 
Suppose that we have n sample feature vectors x1, x2, ..., xn all from the same class, and we 
know that they fall into k compact clusters, k < n. Let mi be the mean of the vectors in cluster 
i. If the clusters are well separated, we can use a minimum-distance classifier to separate 
them. That is, we can say that x is in cluster i if || x - mi || is the minimum of all the k 
distances. This suggests the following procedure for finding the k means: 
 

• Make initial guesses for the means m1, m2, ..., mk 
• Until there are no changes in any mean 
• Use the estimated means to classify the samples into clusters  
• For i from 1 to k  

, is an indicator of the distance of the 
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• Replace mi with the mean of all of the samples for 
cluster i 

• end_for 
• end_until  

 
Here is an example showing how the means m1 and m2 move into the centers of two 
clusters.  
 

 
 

This is a simple version of the k-means procedure. It can be viewed as a greedy algorithm 
for partitioning the n samples into k clusters so as to minimize the sum of the squared 
distances to the cluster centers. It does have some weaknesses: 
 

• The way to initialize the means was not specified. One popular way to start is to 
randomly choose k of the samples. 

• The results produced depend on the initial values for the means, and it frequently 
happens that suboptimal partitions are found. The standard solution is to try a 
number of different starting points. 

• It can happen that the set of samples closest to mi is empty, so that mi cannot be 
updated. This is an annoyance that must be handled in an implementation, but that 
we shall ignore. 

• The results depend on the metric used to measure || x - mi ||. A popular solution 
is to normalize each variable by its standard deviation, though this is not always 
desirable. 

• The results depend on the value of k. 
 

This last problem is particularly troublesome, since we often have no way of knowing how 
many clusters exist. In the example shown above, the same algorithm applied to the same 
data produces the following 3-means clustering. Is it better or worse than the 2-means 
clustering? 

 

Unfortunately there is no general theoretical solution to find the optimal number of clusters 
for any given data set. A simple approach is to compare the results of multiple runs with 
different k classes and choose the best one according to a given criterion  

 
1.3.2 Neural Network 
Neural networks (Bishop C. M., 1995) can actually perform a number of regression 
and/or classification tasks at once, although commonly each network performs only one. In 
the vast majority of cases, therefore, the network will have a single output variable, 
although in the case of many-state classification problems, this may correspond to a number 
of output units (the post-processing stage takes care of the mapping from output units to 
output variables). If you do define a single network with multiple output variables, it may 
suffer from cross-talk (the hidden neurons experience difficulty learning, as they are 
attempting to model at least two functions at once). The best solution is usually to train 
separate networks for each output, then to combine them into an ensemble so that they can 
be run as a unit. Neural methods are:  
 

• Multilayer Perceptrons: This is perhaps the most popular network architecture in 
use today, due originally to Rumelhart and McClelland (1986) and discussed at 
length in most neural network textbooks (e.g., Bishop, 1995). This is the type of 
network discussed briefly in previous sections: the units each perform a biased 
weighted sum of their inputs and pass this activation level through a transfer 
function to produce their output, and the units are arranged in a layered feed 
forward topology. The network thus has a simple interpretation as a form of input-
output model, with the weights and thresholds (biases) the free parameters of the 
model. Such networks can model functions of almost arbitrary complexity, with 
the number of layers, and the number of units in each layer, determining the 
function complexity. Important issues in Multilayer Perceptrons (MLP) design 
include specification of the number of hidden layers and the number of units in 
these layers (Bishop C. M., 1995), (D. Michie, 1994). 

The number of input and output units is defined by the problem (there may be 
some uncertainty about precisely which inputs to use, a point to which we will 
return later. However, for the moment we will assume that the input variables are 
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use today, due originally to Rumelhart and McClelland (1986) and discussed at 
length in most neural network textbooks (e.g., Bishop, 1995). This is the type of 
network discussed briefly in previous sections: the units each perform a biased 
weighted sum of their inputs and pass this activation level through a transfer 
function to produce their output, and the units are arranged in a layered feed 
forward topology. The network thus has a simple interpretation as a form of input-
output model, with the weights and thresholds (biases) the free parameters of the 
model. Such networks can model functions of almost arbitrary complexity, with 
the number of layers, and the number of units in each layer, determining the 
function complexity. Important issues in Multilayer Perceptrons (MLP) design 
include specification of the number of hidden layers and the number of units in 
these layers (Bishop C. M., 1995), (D. Michie, 1994). 

The number of input and output units is defined by the problem (there may be 
some uncertainty about precisely which inputs to use, a point to which we will 
return later. However, for the moment we will assume that the input variables are 
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intuitively selected and are all meaningful). The number of hidden units to use is 
far from clear. As good a starting point as any is to use one hidden layer, with the 
number of units equal to half the sum of the number of input and output units. 
Again, we will discuss how to choose a sensible number later. 

• Training Multilayer Perceptrons: Once the number of layers, and number of units 
in each layer, has been selected, the network's weights and thresholds must be set 
so as to minimize the prediction error made by the network. This is the role of 
the training algorithms. The historical cases that you have gathered are used to 
automatically adjust the weights and thresholds in order to minimize this error. 
This process is equivalent to fitting the model represented by the network to the 
training data available. The error of a particular configuration of the network can 
be determined by running all the training cases through the network, comparing 
the actual output generated with the desired or target outputs. The differences are 
combined together by an error function to give the network error. The most 
common error functions are the sum squared error (used for regression problems), 
where the individual errors of output units on each case are squared and summed 
together, and the cross entropy functions (used for maximum likelihood 
classification). 

In traditional modeling approaches (e.g., linear modeling) it is possible to 
algorithmically determine the model configuration that absolutely minimizes this 
error. The price paid for the greater (non-linear) modeling power of neural 
networks is that although we can adjust a network to lower its error, we can never 
be sure that the error could not be lower still. 
 

A helpful concept here is the error surface. Each of the N weights and thresholds of the 
network (i.e., the free parameters of the model) is taken to be a dimension in space. 
The N+1th dimension is the network error. For any possible configuration of weights the 
error can be plotted in the N+1th dimension, forming an error surface. The objective of 
network training is to find the lowest point in this many-dimensional surface. 
In a linear model with sum squared error function, this error surface is a parabola (a 
quadratic), which means that it is a smooth bowl-shape with a single minimum. It is 
therefore "easy" to locate the minimum. 
Neural network error surfaces are much more complex, and are characterized by a number 
of unhelpful features, such as local minima (which are lower than the surrounding terrain, 
but above the global minimum), flat-spots and plateaus, saddle-points, and long narrow 
ravines. 
It is not possible to analytically determine where the global minimum of the error surface is, 
and so neural network training is essentially an exploration of the error surface. From an 
initially random configuration of weights and thresholds (i.e., a random point on the error 
surface), the training algorithms incrementally seek for the global minimum. Typically, the 
gradient (slope) of the error surface is calculated at the current point, and used to make a 
downhill move. Eventually, the algorithm stops in a low point, which may be a local 
minimum (but hopefully is the global minimum). 
 
 

• The Back Propagation Algorithm: The best-known example of a neural 
network training algorithm is back propagation (Haykin, 19994), (Patterson, 
19996), (Fausett, 19994). Modern second-order algorithms such as conjugate 
gradient descent and Levenberg-Marquardt (see Bishop, 1995; Shepherd, 1997) (both 
included in ST Neural Networks) are substantially faster (e.g., an order of 
magnitude faster) for many problems, but back propagation still has advantages in 
some circumstances, and is the easiest algorithm to understand. We will introduce 
this now, and discuss the more advanced algorithms later. In back propagation, the 
gradient vector of the error surface is calculated. This vector points along the line 
of steepest descent from the current point, so we know that if we move along it a 
"short" distance, we will decrease the error. A sequence of such moves (slowing as 
we near the bottom) will eventually find a minimum of some sort. The difficult 
part is to decide how large the steps should be. 

Large steps may converge more quickly, but may also overstep the solution or (if 
the error surface is very eccentric) go off in the wrong direction. A classic example 
of this in neural network training is where the algorithm progresses very slowly 
along a steep, narrow, valley, bouncing from one side across to the other. In 
contrast, very small steps may go in the correct direction, but they also require a 
large number of iterations. In practice, the step size is proportional to the slope (so 
that the algorithm settles down in a minimum) and to a special constant: 
the learning rate. The correct setting for the learning rate is application-dependent, 
and is typically chosen by experiment; it may also be time-varying, getting smaller 
as the algorithm progresses. 
 

The algorithm is also usually modified by inclusion of a momentum term: this encourages 
movement in a fixed direction, so that if several steps are taken in the same direction, the 
algorithm "picks up speed", which gives it the ability to (sometimes) escape local minimum, 
and also to move rapidly over flat spots and plateaus. 
The algorithm therefore progresses iteratively, through a number of epochs. On each epoch, 
the training cases are each submitted in turn to the network, and target and actual outputs 
compared and the error calculated. This error, together with the error surface gradient, is 
used to adjust the weights, and then the process repeats. The initial network configuration is 
random, and training stops when a given number of epochs elapses, or when the error 
reaches an acceptable level, or when the error stops improving (you can select which of 
these stopping conditions to use). 
 

• Over-learning and Generalization: One major problem with the approach 
outlined above is that it doesn't actually minimize the error that we are really 
interested in - which is the expected error the network will make when new cases 
are submitted to it. In other words, the most desirable property of a network is its 
ability to generalize to new cases. In reality, the network is trained to minimize the 
error on the training set, and short of having a perfect and infinitely large training 
set, this is not the same thing as minimizing the error on the real error surface - the 
error surface of the underlying and unknown model (Bishop C. M., 1995). 
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intuitively selected and are all meaningful). The number of hidden units to use is 
far from clear. As good a starting point as any is to use one hidden layer, with the 
number of units equal to half the sum of the number of input and output units. 
Again, we will discuss how to choose a sensible number later. 

• Training Multilayer Perceptrons: Once the number of layers, and number of units 
in each layer, has been selected, the network's weights and thresholds must be set 
so as to minimize the prediction error made by the network. This is the role of 
the training algorithms. The historical cases that you have gathered are used to 
automatically adjust the weights and thresholds in order to minimize this error. 
This process is equivalent to fitting the model represented by the network to the 
training data available. The error of a particular configuration of the network can 
be determined by running all the training cases through the network, comparing 
the actual output generated with the desired or target outputs. The differences are 
combined together by an error function to give the network error. The most 
common error functions are the sum squared error (used for regression problems), 
where the individual errors of output units on each case are squared and summed 
together, and the cross entropy functions (used for maximum likelihood 
classification). 

In traditional modeling approaches (e.g., linear modeling) it is possible to 
algorithmically determine the model configuration that absolutely minimizes this 
error. The price paid for the greater (non-linear) modeling power of neural 
networks is that although we can adjust a network to lower its error, we can never 
be sure that the error could not be lower still. 
 

A helpful concept here is the error surface. Each of the N weights and thresholds of the 
network (i.e., the free parameters of the model) is taken to be a dimension in space. 
The N+1th dimension is the network error. For any possible configuration of weights the 
error can be plotted in the N+1th dimension, forming an error surface. The objective of 
network training is to find the lowest point in this many-dimensional surface. 
In a linear model with sum squared error function, this error surface is a parabola (a 
quadratic), which means that it is a smooth bowl-shape with a single minimum. It is 
therefore "easy" to locate the minimum. 
Neural network error surfaces are much more complex, and are characterized by a number 
of unhelpful features, such as local minima (which are lower than the surrounding terrain, 
but above the global minimum), flat-spots and plateaus, saddle-points, and long narrow 
ravines. 
It is not possible to analytically determine where the global minimum of the error surface is, 
and so neural network training is essentially an exploration of the error surface. From an 
initially random configuration of weights and thresholds (i.e., a random point on the error 
surface), the training algorithms incrementally seek for the global minimum. Typically, the 
gradient (slope) of the error surface is calculated at the current point, and used to make a 
downhill move. Eventually, the algorithm stops in a low point, which may be a local 
minimum (but hopefully is the global minimum). 
 
 

• The Back Propagation Algorithm: The best-known example of a neural 
network training algorithm is back propagation (Haykin, 19994), (Patterson, 
19996), (Fausett, 19994). Modern second-order algorithms such as conjugate 
gradient descent and Levenberg-Marquardt (see Bishop, 1995; Shepherd, 1997) (both 
included in ST Neural Networks) are substantially faster (e.g., an order of 
magnitude faster) for many problems, but back propagation still has advantages in 
some circumstances, and is the easiest algorithm to understand. We will introduce 
this now, and discuss the more advanced algorithms later. In back propagation, the 
gradient vector of the error surface is calculated. This vector points along the line 
of steepest descent from the current point, so we know that if we move along it a 
"short" distance, we will decrease the error. A sequence of such moves (slowing as 
we near the bottom) will eventually find a minimum of some sort. The difficult 
part is to decide how large the steps should be. 

Large steps may converge more quickly, but may also overstep the solution or (if 
the error surface is very eccentric) go off in the wrong direction. A classic example 
of this in neural network training is where the algorithm progresses very slowly 
along a steep, narrow, valley, bouncing from one side across to the other. In 
contrast, very small steps may go in the correct direction, but they also require a 
large number of iterations. In practice, the step size is proportional to the slope (so 
that the algorithm settles down in a minimum) and to a special constant: 
the learning rate. The correct setting for the learning rate is application-dependent, 
and is typically chosen by experiment; it may also be time-varying, getting smaller 
as the algorithm progresses. 
 

The algorithm is also usually modified by inclusion of a momentum term: this encourages 
movement in a fixed direction, so that if several steps are taken in the same direction, the 
algorithm "picks up speed", which gives it the ability to (sometimes) escape local minimum, 
and also to move rapidly over flat spots and plateaus. 
The algorithm therefore progresses iteratively, through a number of epochs. On each epoch, 
the training cases are each submitted in turn to the network, and target and actual outputs 
compared and the error calculated. This error, together with the error surface gradient, is 
used to adjust the weights, and then the process repeats. The initial network configuration is 
random, and training stops when a given number of epochs elapses, or when the error 
reaches an acceptable level, or when the error stops improving (you can select which of 
these stopping conditions to use). 
 

• Over-learning and Generalization: One major problem with the approach 
outlined above is that it doesn't actually minimize the error that we are really 
interested in - which is the expected error the network will make when new cases 
are submitted to it. In other words, the most desirable property of a network is its 
ability to generalize to new cases. In reality, the network is trained to minimize the 
error on the training set, and short of having a perfect and infinitely large training 
set, this is not the same thing as minimizing the error on the real error surface - the 
error surface of the underlying and unknown model (Bishop C. M., 1995). 
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The most important manifestation of this distinction is the problem of over-learning, 
or over-fitting. It is easiest to demonstrate this concept using polynomial curve fitting rather 
than neural networks, but the concept is precisely the same. 
A polynomial is an equation with terms containing only constants and powers of the 
variables. For example: 
 

y=2x+3 
y=3x2+4x+1 

 
Different polynomials have different shapes, with larger powers (and therefore larger 
numbers of terms) having steadily more eccentric shapes. Given a set of data, we may want 
to fit a polynomial curve (i.e., a model) to explain the data. The data is probably noisy, so we 
don't necessarily expect the best model to pass exactly through all the points. A low-order 
polynomial may not be sufficiently flexible to fit close to the points, whereas a high-order 
polynomial is actually too flexible, fitting the data exactly by adopting a highly eccentric 
shape that is actually unrelated to the underlying function. See figure 4 below. 
 

 
Fig. 4. High-order polynomial sample 

 
Neural networks have precisely the same problem. A network with more weights models a 
more complex function, and is therefore prone to over-fitting. A network with less weight 
may not be sufficiently powerful to model the underlying function. For example, a network 
with no hidden layers actually models a simple linear function. How then can we select the 
right complexity of network? A larger network will almost invariably achieve a lower error 
eventually, but this may indicate over-fitting rather than good modeling. 
The answer is to check progress against an independent data set, the selection set. Some of 
the cases are reserved, and not actually used for training in the back propagation algorithm. 
Instead, they are used to keep an independent check on the progress of the algorithm. It is 
invariably the case that the initial performance of the network on training and selection sets 
is the same (if it is not at least approximately the same, the division of cases between the two 
sets is probably biased). As training progresses, the training error naturally drops, and 
providing training is minimizing the true error function, the selection error drops too. 
However, if the selection error stops dropping, or indeed starts to rise, this indicates that the 
network is starting to overfit the data, and training should cease. When over-fitting occurs 
during the training process like this, it is called over-learning. In this case, it is usually 

advisable to decrease the number of hidden units and/or hidden layers, as the network is 
over-powerful for the problem at hand. In contrast, if the network is not sufficiently 
powerful to model the underlying function, over-learning is not likely to occur, and neither 
training nor selection errors will drop to a satisfactory level. 
The problems associated with local minima, and decisions over the size of network to use, 
imply that using a neural network typically involves experimenting with a large number of 
different networks, probably training each one a number of times (to avoid being fooled by 
local minima), and observing individual performances. The key guide to performance here 
is the selection error. However, following the standard scientific precept that, all else being 
equal, a simple model is always preferable to a complex model, you can also select a smaller 
network in preference to a larger one with a negligible improvement in selection error. 
A problem with this approach of repeated experimentation is that the selection set plays a 
key role in selecting the model, which means that it is actually part of the training process. 
Its reliability as an independent guide to performance of the model is therefore 
compromised - with sufficient experiments, you may just hit upon a lucky network that 
happens to perform well on the selection set. To add confidence in the performance of the 
final model, it is therefore normal practice (at least where the volume of training data allows 
it) to reserve a third set of cases - the test set. The final model is tested with the test set data, 
to ensure that the results on the selection and training set are real, and not artifacts of the 
training process. Of course, to fulfill this role properly the test set should be used only once - 
if it is in turn used to adjust and reiterate the training process, it effectively becomes 
selection data! 
This division into multiple subsets is very unfortunate, given that we usually have less data 
than we would ideally desire even for a single subset. We can get around this problem by 
resampling. Experiments can be conducted using different divisions of the available data 
into training, selection, and test sets. There are a number of approaches to this subset, 
including random (monte-carlo) resampling, cross-validation, and bootstrap. If we make 
design decisions, such as the best configuration of neural network to use, based upon a 
number of experiments with different subset examples, the results will be much more 
reliable. We can then either use those experiments solely to guide the decision as to which 
network types to use, and train such networks from scratch with new samples (this removes 
any sampling bias); or, we can retain the best networks found during the sampling process, 
but average their results in an ensemble, which at least mitigates the sampling bias. 
To summarize, network design (once the input variables have been selected) follows a 
number of stages: 
 

• Select an initial configuration (typically, one hidden layer with the number of 
hidden units set to half the sum of the number of input and output units). 

• Iteratively conduct a number of experiments with each configuration, retaining 
the best network (in terms of selection error) found. A number of experiments are 
required with each configuration to avoid being fooled if training locates a local 
minimum, and it is also best to resample. 

• On each experiment, if under-learning occurs (the network doesn't achieve an 
acceptable performance level) try adding more neurons to the hidden layer(s). If 
this doesn't help, try adding an extra hidden layer. 
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The most important manifestation of this distinction is the problem of over-learning, 
or over-fitting. It is easiest to demonstrate this concept using polynomial curve fitting rather 
than neural networks, but the concept is precisely the same. 
A polynomial is an equation with terms containing only constants and powers of the 
variables. For example: 
 

y=2x+3 
y=3x2+4x+1 

 
Different polynomials have different shapes, with larger powers (and therefore larger 
numbers of terms) having steadily more eccentric shapes. Given a set of data, we may want 
to fit a polynomial curve (i.e., a model) to explain the data. The data is probably noisy, so we 
don't necessarily expect the best model to pass exactly through all the points. A low-order 
polynomial may not be sufficiently flexible to fit close to the points, whereas a high-order 
polynomial is actually too flexible, fitting the data exactly by adopting a highly eccentric 
shape that is actually unrelated to the underlying function. See figure 4 below. 
 

 
Fig. 4. High-order polynomial sample 

 
Neural networks have precisely the same problem. A network with more weights models a 
more complex function, and is therefore prone to over-fitting. A network with less weight 
may not be sufficiently powerful to model the underlying function. For example, a network 
with no hidden layers actually models a simple linear function. How then can we select the 
right complexity of network? A larger network will almost invariably achieve a lower error 
eventually, but this may indicate over-fitting rather than good modeling. 
The answer is to check progress against an independent data set, the selection set. Some of 
the cases are reserved, and not actually used for training in the back propagation algorithm. 
Instead, they are used to keep an independent check on the progress of the algorithm. It is 
invariably the case that the initial performance of the network on training and selection sets 
is the same (if it is not at least approximately the same, the division of cases between the two 
sets is probably biased). As training progresses, the training error naturally drops, and 
providing training is minimizing the true error function, the selection error drops too. 
However, if the selection error stops dropping, or indeed starts to rise, this indicates that the 
network is starting to overfit the data, and training should cease. When over-fitting occurs 
during the training process like this, it is called over-learning. In this case, it is usually 

advisable to decrease the number of hidden units and/or hidden layers, as the network is 
over-powerful for the problem at hand. In contrast, if the network is not sufficiently 
powerful to model the underlying function, over-learning is not likely to occur, and neither 
training nor selection errors will drop to a satisfactory level. 
The problems associated with local minima, and decisions over the size of network to use, 
imply that using a neural network typically involves experimenting with a large number of 
different networks, probably training each one a number of times (to avoid being fooled by 
local minima), and observing individual performances. The key guide to performance here 
is the selection error. However, following the standard scientific precept that, all else being 
equal, a simple model is always preferable to a complex model, you can also select a smaller 
network in preference to a larger one with a negligible improvement in selection error. 
A problem with this approach of repeated experimentation is that the selection set plays a 
key role in selecting the model, which means that it is actually part of the training process. 
Its reliability as an independent guide to performance of the model is therefore 
compromised - with sufficient experiments, you may just hit upon a lucky network that 
happens to perform well on the selection set. To add confidence in the performance of the 
final model, it is therefore normal practice (at least where the volume of training data allows 
it) to reserve a third set of cases - the test set. The final model is tested with the test set data, 
to ensure that the results on the selection and training set are real, and not artifacts of the 
training process. Of course, to fulfill this role properly the test set should be used only once - 
if it is in turn used to adjust and reiterate the training process, it effectively becomes 
selection data! 
This division into multiple subsets is very unfortunate, given that we usually have less data 
than we would ideally desire even for a single subset. We can get around this problem by 
resampling. Experiments can be conducted using different divisions of the available data 
into training, selection, and test sets. There are a number of approaches to this subset, 
including random (monte-carlo) resampling, cross-validation, and bootstrap. If we make 
design decisions, such as the best configuration of neural network to use, based upon a 
number of experiments with different subset examples, the results will be much more 
reliable. We can then either use those experiments solely to guide the decision as to which 
network types to use, and train such networks from scratch with new samples (this removes 
any sampling bias); or, we can retain the best networks found during the sampling process, 
but average their results in an ensemble, which at least mitigates the sampling bias. 
To summarize, network design (once the input variables have been selected) follows a 
number of stages: 
 

• Select an initial configuration (typically, one hidden layer with the number of 
hidden units set to half the sum of the number of input and output units). 

• Iteratively conduct a number of experiments with each configuration, retaining 
the best network (in terms of selection error) found. A number of experiments are 
required with each configuration to avoid being fooled if training locates a local 
minimum, and it is also best to resample. 

• On each experiment, if under-learning occurs (the network doesn't achieve an 
acceptable performance level) try adding more neurons to the hidden layer(s). If 
this doesn't help, try adding an extra hidden layer. 
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• If over-learning occurs (selection error starts to rise) try removing hidden units 
(and possibly layers). 

• Once you have experimentally determined an effective configuration for your 
networks, resample and generate new networks with that configuration. 

 
• Data Selection: All the above stages rely on a key assumption. Specifically, the 

training, verification and test data must be representative of the underlying model 
(and, further, the three sets must be independently representative). The old 
computer science adage "garbage in, garbage out" could not apply more strongly 
than in neural modeling. If training data is not representative, then the model's 
worth is at best compromised. At worst, it may be useless. It is worth spelling out 
the kind of problems which can corrupt a training set: 
 

The future is not the past. Training data is typically historical. If circumstances have 
changed, relationships which held in the past may no longer hold. All eventualities must be 
covered. A neural network can only learn from cases that are present. If people with 
incomes over $100,000 per year are a bad credit risk, and your training data includes nobody 
over $40,000 per year, you cannot expect it to make a correct decision when it encounters 
one of the previously-unseen cases. Extrapolation is dangerous with any model, but some 
types of neural network may make particularly poor predictions in such circumstances. 
A network learns the easiest features it can. A classic (possibly apocryphal) illustration of 
this is a vision project designed to automatically recognize tanks. A network is trained on a 
hundred pictures including tanks, and a hundred not. It achieves a perfect 100% score. 
When tested on new data, it proves hopeless. The reason? The pictures of tanks are taken on 
dark, rainy days; the pictures without on sunny days. The network learns to distinguish the 
(trivial matter of) differences in overall light intensity. To work, the network would need 
training cases including all weather and lighting conditions under which it is expected to 
operate - not to mention all types of terrain, angles of shot, distances... 
Unbalanced data sets. Since a network minimizes an overall error, the proportion of types of 
data in the set is critical. A network trained on a data set with 900 good cases and 100 bad 
will bias its decision towards good cases, as this allows the algorithm to lower the overall 
error (which is much more heavily influenced by the good cases). If the representation of 
good and bad cases is different in the real population, the network's decisions may be 
wrong. A good example would be disease diagnosis. Perhaps 90% of patients routinely 
tested are clear of a disease. A network is trained on an available data set with a 90/10 split. 
It is then used in diagnosis on patients complaining of specific problems, where the 
likelihood of disease is 50/50. The network will react over-cautiously and fail to recognize 
disease in some unhealthy patients. In contrast, if trained on the "complainants" data, and 
then tested on "routine" data, the network may raise a high number of false positives. In 
such circumstances, the data set may need to be crafted to take account of the distribution of 
data (e.g., you could replicate the less numerous cases, or remove some of the numerous 
cases), or the network's decisions modified by the inclusion of a loss matrix (Bishop C. M., 
1995). Often, the best approach is to ensure even representation of different cases, then to 
interpret the network's decisions accordingly. 
 
 

1.3.3 Self Organised Map 
Self Organizing Feature Map (SOFM, or Kohonen) networks are used quite differently to the 
other networks. Whereas all the other networks are designed for supervised 
learning tasks, SOFM networks are designed primarily for unsupervised learning (Haykin, 
19994), (Patterson, 19996), (Fausett, 19994) (Whereas in supervised learning the training data 
set contains cases featuring input variables together with the associated outputs (and the 
network must infer a mapping from the inputs to the outputs), in unsupervised learning the 
training data set contains only input variables. At first glance this may seem strange. 
Without outputs, what can the network learn? The answer is that the SOFM 
network attempts to learn the structure of the data.  
Also Kohonen (Kohonen, 1997) explained one possible use is therefore in exploratory data 
analysis. The SOFM network can learn to recognize clusters of data, and can also relate 
similar classes to each other. The user can build up an understanding of the data, which is 
used to refine the network. As classes of data are recognized, they can be labelled, so that 
the network becomes capable of classification tasks. SOFM networks can also be used for 
classification when output classes are immediately available - the advantage in this case is 
their ability to highlight similarities between classes. 
A second possible use is in novelty detection. SOFM networks can learn to recognize 
clusters in the training data, and respond to it. If new data, unlike previous cases, is 
encountered, the network fails to recognize it and this indicates novelty. 
A SOFM network has only two layers: the input layer, and an output layer of radial units 
(also known as the topological map layer). The units in the topological map layer are laid 
out in space - typically in two dimensions (although ST Neural Networks also supports one-
dimensional Kohonen networks). 
SOFM networks (Patterson, 19996) are trained using an iterative algorithm. Starting with an 
initially-random set of radial centres, the algorithm gradually adjusts them to reflect the 
clustering of the training data. At one level, this compares with the sub-sampling and K-
Means algorithms used to assign centres in SOM network and indeed the SOFM algorithm 
can be used to assign centres for these types of networks. However, the algorithm also acts 
on a different level. 
The iterative training procedure also arranges the network so that units representing centres 
close together in the input space are also situated close together on the topological map. You 
can think of the network's topological layer as a crude two-dimensional grid, which must be 
folded and distorted into the N-dimensional input space, so as to preserve as far as possible 
the original structure. Clearly any attempt to represent an N-dimensional space in two 
dimensions will result in loss of detail; however, the technique can be worthwhile in 
allowing the user to visualize data which might otherwise be impossible to understand. 
The basic iterative Kohonen algorithm simply runs through a number of epochs, on each 
epoch executing each training case and applying the following algorithm: 
 

• Select the winning neuron (the one who's centre is nearest to the input case); 
• Adjust the winning neuron to be more like the input case (a weighted sum of the 

old neuron centre and the training case). 
 

The algorithm uses a time-decaying learning rate, which is used to perform the weighted 
sum and ensures that the alterations become more subtle as the epochs pass. This ensures 
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• If over-learning occurs (selection error starts to rise) try removing hidden units 
(and possibly layers). 

• Once you have experimentally determined an effective configuration for your 
networks, resample and generate new networks with that configuration. 

 
• Data Selection: All the above stages rely on a key assumption. Specifically, the 

training, verification and test data must be representative of the underlying model 
(and, further, the three sets must be independently representative). The old 
computer science adage "garbage in, garbage out" could not apply more strongly 
than in neural modeling. If training data is not representative, then the model's 
worth is at best compromised. At worst, it may be useless. It is worth spelling out 
the kind of problems which can corrupt a training set: 
 

The future is not the past. Training data is typically historical. If circumstances have 
changed, relationships which held in the past may no longer hold. All eventualities must be 
covered. A neural network can only learn from cases that are present. If people with 
incomes over $100,000 per year are a bad credit risk, and your training data includes nobody 
over $40,000 per year, you cannot expect it to make a correct decision when it encounters 
one of the previously-unseen cases. Extrapolation is dangerous with any model, but some 
types of neural network may make particularly poor predictions in such circumstances. 
A network learns the easiest features it can. A classic (possibly apocryphal) illustration of 
this is a vision project designed to automatically recognize tanks. A network is trained on a 
hundred pictures including tanks, and a hundred not. It achieves a perfect 100% score. 
When tested on new data, it proves hopeless. The reason? The pictures of tanks are taken on 
dark, rainy days; the pictures without on sunny days. The network learns to distinguish the 
(trivial matter of) differences in overall light intensity. To work, the network would need 
training cases including all weather and lighting conditions under which it is expected to 
operate - not to mention all types of terrain, angles of shot, distances... 
Unbalanced data sets. Since a network minimizes an overall error, the proportion of types of 
data in the set is critical. A network trained on a data set with 900 good cases and 100 bad 
will bias its decision towards good cases, as this allows the algorithm to lower the overall 
error (which is much more heavily influenced by the good cases). If the representation of 
good and bad cases is different in the real population, the network's decisions may be 
wrong. A good example would be disease diagnosis. Perhaps 90% of patients routinely 
tested are clear of a disease. A network is trained on an available data set with a 90/10 split. 
It is then used in diagnosis on patients complaining of specific problems, where the 
likelihood of disease is 50/50. The network will react over-cautiously and fail to recognize 
disease in some unhealthy patients. In contrast, if trained on the "complainants" data, and 
then tested on "routine" data, the network may raise a high number of false positives. In 
such circumstances, the data set may need to be crafted to take account of the distribution of 
data (e.g., you could replicate the less numerous cases, or remove some of the numerous 
cases), or the network's decisions modified by the inclusion of a loss matrix (Bishop C. M., 
1995). Often, the best approach is to ensure even representation of different cases, then to 
interpret the network's decisions accordingly. 
 
 

1.3.3 Self Organised Map 
Self Organizing Feature Map (SOFM, or Kohonen) networks are used quite differently to the 
other networks. Whereas all the other networks are designed for supervised 
learning tasks, SOFM networks are designed primarily for unsupervised learning (Haykin, 
19994), (Patterson, 19996), (Fausett, 19994) (Whereas in supervised learning the training data 
set contains cases featuring input variables together with the associated outputs (and the 
network must infer a mapping from the inputs to the outputs), in unsupervised learning the 
training data set contains only input variables. At first glance this may seem strange. 
Without outputs, what can the network learn? The answer is that the SOFM 
network attempts to learn the structure of the data.  
Also Kohonen (Kohonen, 1997) explained one possible use is therefore in exploratory data 
analysis. The SOFM network can learn to recognize clusters of data, and can also relate 
similar classes to each other. The user can build up an understanding of the data, which is 
used to refine the network. As classes of data are recognized, they can be labelled, so that 
the network becomes capable of classification tasks. SOFM networks can also be used for 
classification when output classes are immediately available - the advantage in this case is 
their ability to highlight similarities between classes. 
A second possible use is in novelty detection. SOFM networks can learn to recognize 
clusters in the training data, and respond to it. If new data, unlike previous cases, is 
encountered, the network fails to recognize it and this indicates novelty. 
A SOFM network has only two layers: the input layer, and an output layer of radial units 
(also known as the topological map layer). The units in the topological map layer are laid 
out in space - typically in two dimensions (although ST Neural Networks also supports one-
dimensional Kohonen networks). 
SOFM networks (Patterson, 19996) are trained using an iterative algorithm. Starting with an 
initially-random set of radial centres, the algorithm gradually adjusts them to reflect the 
clustering of the training data. At one level, this compares with the sub-sampling and K-
Means algorithms used to assign centres in SOM network and indeed the SOFM algorithm 
can be used to assign centres for these types of networks. However, the algorithm also acts 
on a different level. 
The iterative training procedure also arranges the network so that units representing centres 
close together in the input space are also situated close together on the topological map. You 
can think of the network's topological layer as a crude two-dimensional grid, which must be 
folded and distorted into the N-dimensional input space, so as to preserve as far as possible 
the original structure. Clearly any attempt to represent an N-dimensional space in two 
dimensions will result in loss of detail; however, the technique can be worthwhile in 
allowing the user to visualize data which might otherwise be impossible to understand. 
The basic iterative Kohonen algorithm simply runs through a number of epochs, on each 
epoch executing each training case and applying the following algorithm: 
 

• Select the winning neuron (the one who's centre is nearest to the input case); 
• Adjust the winning neuron to be more like the input case (a weighted sum of the 

old neuron centre and the training case). 
 

The algorithm uses a time-decaying learning rate, which is used to perform the weighted 
sum and ensures that the alterations become more subtle as the epochs pass. This ensures 
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that the centres settle down to a compromise representation of the cases which cause 
that neuron to win. The topological ordering property is achieved by adding the concept of 
a neighbourhood to the algorithm. The neighbourhood is a set of neurons surrounding the 
winning neuron. The neighbourhood, like the learning rate, decays over time, so that 
initially quite a large number of neurons belong to the neighbourhood (perhaps almost the 
entire topological map); in the latter stages the neighbourhood will be zero (i.e., consists 
solely of the winning neuron itself). In the Kohonen algorithm, the adjustment of neurons is 
actually applied not just to the winning neuron, but to all the members of the current 
neighbourhood. 
The effect of this neighbourhood update is that initially quite large areas of the network are 
"dragged towards" training cases - and dragged quite substantially. The network develops a 
crude topological ordering, with similar cases activating clumps of neurons in 
the topological map. As epochs pass the learning rate and neighbourhood both decrease, so 
that finer distinctions within areas of the map can be drawn, ultimately resulting in fine-
tuning of individual neurons. Often, training is deliberately conducted in two distinct 
phases: a relatively short phase with high learning rates and neighbourhood, and a long 
phase with low learning rate and zero or near-zero neighbourhoods. 
Once the network has been trained to recognize structure in the data, it can be used as a 
visualization tool to examine the data. The Win Frequencies Datasheet (counts of the number 
of times each neuron wins when training cases are executed) can be examined to see if 
distinct clusters have formed on the map. Individual cases are executed and the topological 
map observed, to see if some meaning can be assigned to the clusters (this usually involves 
referring back to the original application area, so that the relationship between clustered 
cases can be established). Once clusters are identified, neurons in the topological map are 
labelled to indicate their meaning (sometimes individual cases may be labelled, too). Once 
the topological map has been built up in this way, new cases can be submitted to the 
network. If the winning neuron has been labelled with a class name, the network can 
perform classification. If not, the network is regarded as undecided. 
SOFM networks also make use of the accept threshold, when performing classification. 
Since the activation level of a neuron in a SOFM network is the distance of the neuron from 
the input case, the accept threshold acts as a maximum recognized distance. If the activation 
of the winning neuron is greater than this distance, the SOFM network is regarded as 
undecided. Thus, by labelling all neurons and setting the accept threshold appropriately, a 
SOFM network can act as a novelty detector (it reports undecided only if the input case is 
sufficiently dissimilar to all radial units). 
SOFM networks as expressed by Kohonen (Kohonen, 1997) are inspired by some known 
properties of the brain. The cerebral cortex is actually a large flat sheet (about 0.5m squared; 
it is folded up into the familiar convoluted shape only for convenience in fitting into the 
skull!) with known topological properties (for example, the area corresponding to the hand 
is next to the arm, and a distorted human frame can be topologically mapped out in two 
dimensions on its surface).  

 
1.4 Grouping Data Using Self Organise Map  
The first part of a SOM is the data. Above are some examples of 3 dimensional data which 
are commonly used when experimenting with SOMs. Here the colours are represented in 
three dimensions (red, blue, and green.) The idea of the self-organizing maps is to project 

the n-dimensional data (here it would be colour and would be 3 dimensions) into something 
that be better understood visually (in this case it would be a 2 dimensional image map). 
 

 
Fig. 5. Sample Data 
 
In this case one would expect the dark blue and the greys to end up near each other on a 
good map and yellow close to both the red and the green.  The second components to SOMs 
are the weight vectors. Each weight vector has two components to them which I have here 
attempted to show in the image below.  The first part of a weight vector is its data. This is of 
the same dimensions as the sample vectors and the second part of a weight vector is its 
natural location. The good thing about colour is that the data can be shown by displaying 
the color, so in this case the color is the data, and the location is the x,y position of the pixel 
on the screen. 
 

 
Fig. 6. 2D Array Weight of Vector 

 
In this example, 2D array of weight vectors was used and would look like figure 5 above. 
This picture is a skewed view of a grid where you have the n-dimensional array for each 
weight and each weight has its own unique location in the grid. Weight vectors don’t 
necessarily have to be arranged in 2 dimensions, a lot of work has been done using SOMs of 
1 dimension, but the data part of the weight must be of the same dimensions as the sample 
vectors.Weights are sometimes referred to as neurons since SOMs are actually neural 
networks.   SOM Algorithm. The way that SOMs go about organizing themselves is by 
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that the centres settle down to a compromise representation of the cases which cause 
that neuron to win. The topological ordering property is achieved by adding the concept of 
a neighbourhood to the algorithm. The neighbourhood is a set of neurons surrounding the 
winning neuron. The neighbourhood, like the learning rate, decays over time, so that 
initially quite a large number of neurons belong to the neighbourhood (perhaps almost the 
entire topological map); in the latter stages the neighbourhood will be zero (i.e., consists 
solely of the winning neuron itself). In the Kohonen algorithm, the adjustment of neurons is 
actually applied not just to the winning neuron, but to all the members of the current 
neighbourhood. 
The effect of this neighbourhood update is that initially quite large areas of the network are 
"dragged towards" training cases - and dragged quite substantially. The network develops a 
crude topological ordering, with similar cases activating clumps of neurons in 
the topological map. As epochs pass the learning rate and neighbourhood both decrease, so 
that finer distinctions within areas of the map can be drawn, ultimately resulting in fine-
tuning of individual neurons. Often, training is deliberately conducted in two distinct 
phases: a relatively short phase with high learning rates and neighbourhood, and a long 
phase with low learning rate and zero or near-zero neighbourhoods. 
Once the network has been trained to recognize structure in the data, it can be used as a 
visualization tool to examine the data. The Win Frequencies Datasheet (counts of the number 
of times each neuron wins when training cases are executed) can be examined to see if 
distinct clusters have formed on the map. Individual cases are executed and the topological 
map observed, to see if some meaning can be assigned to the clusters (this usually involves 
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1.4 Grouping Data Using Self Organise Map  
The first part of a SOM is the data. Above are some examples of 3 dimensional data which 
are commonly used when experimenting with SOMs. Here the colours are represented in 
three dimensions (red, blue, and green.) The idea of the self-organizing maps is to project 

the n-dimensional data (here it would be colour and would be 3 dimensions) into something 
that be better understood visually (in this case it would be a 2 dimensional image map). 
 

 
Fig. 5. Sample Data 
 
In this case one would expect the dark blue and the greys to end up near each other on a 
good map and yellow close to both the red and the green.  The second components to SOMs 
are the weight vectors. Each weight vector has two components to them which I have here 
attempted to show in the image below.  The first part of a weight vector is its data. This is of 
the same dimensions as the sample vectors and the second part of a weight vector is its 
natural location. The good thing about colour is that the data can be shown by displaying 
the color, so in this case the color is the data, and the location is the x,y position of the pixel 
on the screen. 
 

 
Fig. 6. 2D Array Weight of Vector 

 
In this example, 2D array of weight vectors was used and would look like figure 5 above. 
This picture is a skewed view of a grid where you have the n-dimensional array for each 
weight and each weight has its own unique location in the grid. Weight vectors don’t 
necessarily have to be arranged in 2 dimensions, a lot of work has been done using SOMs of 
1 dimension, but the data part of the weight must be of the same dimensions as the sample 
vectors.Weights are sometimes referred to as neurons since SOMs are actually neural 
networks.   SOM Algorithm. The way that SOMs go about organizing themselves is by 
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competeting for representation of the samples. Neurons are also allowed to change 
themselves by learning to become more like samples in hopes of winning the next 
competition. It is this selection and learning process that makes the weights organize 
themselves into a map representing similarities. 
So with these two components (the sample and weight vectors), how can one order the 
weight vectors in such a way that they will represent the similarities of the sample vectors? 
This is accomplished by using  the very simple algorithm shown here. 
 

 
 

 

 

 

 

 
Fig. 7. A Sample SOM Algorithm  
 
The first step in constructing a SOM is to initialize the weight vectors. From there you select 
a sample vector randomly and search the map of weight vectors to find which weight best 
represents that sample. Since each weight vector has a location, it also has neighbouring 
weights that are close to it. The weight that is chosen is rewarded by being able to become 
more like that randomly selected sample vector. In addition to this reward, the neighbours 
of that weight are also rewarded by being able to become more like the chosen sample 
vector. From this step we increase t some small amount because the number of neighbours 
and how much each weight can learn decreases over time. This whole process is then 
repeated a large number of times, usually more than 1000 times. 
In the case of colours, the program would first select a color from the array of samples such 
as green, then search the weights for the location containing the greenest color. From there, 
the colour surrounding that weight are then made more green. Then another color is chosen, 
such as red, and the process continues. They processes are:   
 

• Initializing the Weights 
Here are screen shots of the three different ways which decided to initialize the 
weight vector map. We should first mention the palette here. In the java program 
below there are 6 intensities of red, blue, and green displayed, it really does not 
take away from the visual experience. The actual values for the weights are floats, 
so they have a bigger range than the six values that are shown in figure 7 below. 

Initialize Map
For t from 0 to 1

Randomly select a sample
Get best matching unit
Scale neighbors
Increase t a small amount

End for

 
 

Fig. 8. Weight Values 
 

There are a number of ways to initialize the weight vectors. The first you can see is just give 
each weight vector random values for its data. A screen of pixels with random red, blue, and 
green values is shown above on the left. Unfortunately calculating SOMs according to 
Kohonen (Kohonen, 1997) is very computationally expensive, so there are some variants of 
initializing the weights so that samples that you know for a fact are not similar start off far 
away. This way you need less iteration to produce a good map and can save yourself some 
time. 
Here we made two other ways to initialize the weights in addition to the random one. This 
one is just putting red, blue, green, and black at all four corners and having them slowly 
fade toward the center.  This other one is having red, green, and blue equally distant from 
one another and from the center.    
 

• B. Get Best Matching Unit 
This is a very simple step, just go through all the weight vectors and calculate the 
distance from each weight to the chosen sample vector. The weight with the 
shortest distance is the winner. If there are more than one with the same distance, 
then the winning weight is chosen randomly among the weights with the shortest 
distance.  There are a number of different ways for determining what distance 
actually means mathematically.  The most common method is to use the Euclidean 
distance: 
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where x[i] is the data value at the ith data member of a sample and n is the number of 
dimensions to the sample vectors. 
In the case of colour, if we can think of them as 3D points, each component being an axis. If 
we have chosen green which is of the value (0,6,0), the color light green (3,6,3) will be closer 
to green than red at (6,0,0). 
 
        Light green = Sqrt((3-0)^2+(6-6)^2+(3-0)^2) = 4.24  
        Red           = Sqrt((6-0)^2+(0-6)^2+(0-0)^2) =  8.49 
 
So light green is now the best matching unit, but this operation of calculating distances and 
comparing them is done over the entire map and the wieght with the shortest distance to the 
sample vector is the winner and the BMU. The square root is not computed in the java 
program for speed optimization for this section.   
 

• C. Scale Neighbors 
1. Determining Neighbors 
There are actually two parts to scaling the neighboring weights: determining which 
weights are considered as neighbors and how much each weight can become more 
like the sample vector. The neighbors of a winning weight can be determined using 
a number of different methods. Some use concentric squares, others hexagons, I 
opted to use a gaussian function where every point with a value above zero is 
considered a neighbor. 
As mentioned previously, the amount of neighbors decreases over time. This is 
done so samples can first move to an area where they will probably be, then they 
jockey for position. This process is similar to coarse adjustment followed by fine 
tuning. The function used to decrease the radius of influence does not really matter 
as long as it decreases, we just used a linear function. 

 
Fig. 9. A graph of SOM Neighbour’s determination 

 
Figure 8 above shows a plot of the function used. As the time progresses, the base goes 
towards the centre, so there are less neighbours as time progresses. The initial radius is set 
really high, some value near the width or height of the map.    
 

2. Learning 
The second part to scaling the neighbours is the learning function. The winning 
weight is rewarded with becoming more like the sample vector.  The neighbours 
also become more like the sample vector. An attribute of this learning process is 
that the farther away the neighbour is from the winning vector, the less it learns. 
The rate at which the amount a weight can learn decreases and can also be set to 
whatever you want. I chose to use a gaussian function. This function will return a 
value ranging between 0 and 1, where each neighbor is then changed using the 
parametric equation.  The new color is: 
 

Current color*(1.-t) + sample vector*t 
 

So in the first iteration, the best matching unit will get a t of 1 for its learning 
function, so the weight will then come out of this process with the same exact 
values as the randomly selected sample. 
 

Just as the amount of neighbors a weight has falls off, the amount a weight can learn also 
decreases with time. On the first iteration, the winning weight becomes the sample vector 
since t has a full range of from 0 to 1. Then as time progresses, the winning weight becomes 
slightly more like the sample where the maximum value of t decreases. The rate at which 
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the amount a weight can learn falls of linearly. To depict this visually, in the previous plot, 
the amount a weight can learn is equivalent to how high the bump is at their location.  As 
time progresses, the height of the bump will decrease. Adding this function to the 
neighbourhood function will result in the height of the bump going down while the base of 
the bump shrinks. 
So once a weight is determined the winner, the neighbours of that weight is found and each 
of those neighbours in addition to the winning weight change to become more like the 
sample vector.   

 
1.4.1 Determining the Quality of SOMs 
Below is another example of a SOM generated by the program using 500 iterations in figure 
9. At first glance you will notice that similar colour is all grouped together yet again. 
However, this is not always the case as you can see that there are some colour who are 
surrounded by colour that are nothing like them at all. It may be easy to point this out with 
colour since this is something that we are familiar with, but if we were using more abstract 
data, how would we know that since two entities are close to each other means that they are 
similar and not that they are just there because of bad luck? 
 

 
Fig. 10. SOM Iteration 

 
There is a very simple method for displaying where similarities lie and where they do not. 
In order to compute this we go through all the weights and determine how similar the 
neighbors are. This is done by calculating the distance that the weight vectors make between 
the each weight and each of its neighbors. With an average of these distances a color is then 
assigned to that location. This procedure is located in Screen.java and named public void 
update_bw(). 
If the average distance were high, then the surrounding weights are very different and a 
dark color is assigned to the location of the weight. If the average distance is low, a lighter 
color is assigned. So in areas of the center of the blobs the colour are the same, so it should 
be white since all the neighbors are the same color. In areas between blobs where there are 

similarities it should be not white, but a light grey. Areas where the blobs are physically 
close to each other, but are not similar at all there should be black. See Figure 8 below 
 

 
Fig. 11. A sample allocation of Weight in Colour 

 
As shown above, the ravines of black show where the colour may be physically close to each 
other on the map, but are very different from each other when it comes to the actual values 
of the weights. Areas where there is a light grey between the blobs represent a true 
similarity.  In the pictures above, in the bottom right there is black surrounded by colour 
which are not very similar to it. When looking at the black and white similarity SOM, it 
shows that black is not similar to the other colour because there are lines of black 
representing no similarity between those two colour. Also in the top corner there is pink and 
nearby is a light green which are not very near each other in reality, but near each other on 
the colored SOM. Looking at the black and white SOM, it clearly shows that the two not 
very similar by having black in between the two colour. 
With these average distances used to make the black and white map, we can actually assign 
each SOM a value that determines how good the image represents the similarities of the 
samples by simply adding these averages.   

 
1.4.2 Advantages and Disadvantages of SOM 
Self organise map has the following advantages:  
 

• Probably the best thing about SOMs that they are very easy to understand. It’s very 
simple, if they are close together and there is grey connecting them, then they are 
similar. If there is a black ravine between them, then they are different. Unlike 
Multidimensional Scaling or N-land, people can quickly pick up on how to use 
them in an effective manner. 

• Another great thing is that they work very well. As I have shown you they classify 
data well and then are easily evaluate for their own quality so you can actually 
calculated how good a map is and how strong the similarities between objects are.  
 

These are the disadvantages:   
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• One major problem with SOMs is getting the right data. Unfortunately you need a 
value for each dimension of each member of samples in order to generate a map. 
Sometimes this simply is not possible and often it is very difficult to acquire all of 
this data so this is a limiting feature to the use of SOMs often referred to as missing 
data. 

• Another problem is that every SOM is different and finds different similarities 
among the sample vectors. SOMs organize sample data so that in the final product, 
the samples are usually surrounded by similar samples, however similar samples 
are not always near each other. If you have a lot of shades of purple, not always 
will you get one big group with all the purples in that cluster, sometimes the 
clusters will get split and there will be two groups of purple. Using colour we 
could tell that those two groups in reality are similar and that they just got split, 
but with most data, those two clusters will look totally unrelated. So a lot of maps 
need to be constructed in order to get one final good map. 

• The final major problem with SOMs is that they are very computationally 
expensive which is a major drawback since as the dimensions of the data increases, 
dimension reduction visualization techniques become more important, but 
unfortunately then time to compute them also increases. For calculating that black 
and white similarity map, the more neighbours you use to calculate the distance 
the better similarity map you will get, but the number of distances the algorithm 
needs to compute increases exponentially.  
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this data so this is a limiting feature to the use of SOMs often referred to as missing 
data. 

• Another problem is that every SOM is different and finds different similarities 
among the sample vectors. SOMs organize sample data so that in the final product, 
the samples are usually surrounded by similar samples, however similar samples 
are not always near each other. If you have a lot of shades of purple, not always 
will you get one big group with all the purples in that cluster, sometimes the 
clusters will get split and there will be two groups of purple. Using colour we 
could tell that those two groups in reality are similar and that they just got split, 
but with most data, those two clusters will look totally unrelated. So a lot of maps 
need to be constructed in order to get one final good map. 

• The final major problem with SOMs is that they are very computationally 
expensive which is a major drawback since as the dimensions of the data increases, 
dimension reduction visualization techniques become more important, but 
unfortunately then time to compute them also increases. For calculating that black 
and white similarity map, the more neighbours you use to calculate the distance 
the better similarity map you will get, but the number of distances the algorithm 
needs to compute increases exponentially.  
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1. Introduction 
 

Pattern classification is to classify some object into one of the given categories called classes. 
For a specific pattern classification problem, a classifier is computer software. It is developed 
so that objects ( x ) are classified correctly with reasonably good accuracy. Through training 
using input-output pairs, classifiers acquire decision functions that classify an input datum 
into one of the given classes ( i ). In pattern recognition applications we rarely if ever have the 
prior probability )( iP   or the class-conditional density )|( ixp  . of complete knowledge 
about the probabilistic structure of the problem. In a typical case we merely have some vague, 
general knowledge about the situation, together with a number of design samples or training 
data—particular representatives of the patterns we want to training classify. The problem, 
then, is to find some way to use this information to design or data train the classifier.  
The organization of this chapter is to address those cases where a great deal of information 
about the models is known and to move toward problems where the form of the distributions 
are unknown and even the category membership of training patterns is unknown. We begin in 
Bayes decision theory(Sec.2) by considering the ideal case in which the probability structure 
underlying the categories is known perfectly. In Sec.3(Maximum Likelihood) we address the 
case when the full probability structure underlying the categories is not known, but the 
general forms of their distributions are the models. Thus the uncertainty about a probability 
distribution is represented by the values of some unknown parameters, and we seek to 
determine these parameters to attain the best categorization. In Sec.4(Nonparametric 
techniques)we move yet further from the Bayesian ideal,and assume that we have no prior 
parameterized knowledge about the underlying probability structure;in essence our 
classification will be based on information provided by training samples alone. Classic 
techniques such as the nearest-neighbor algorithm and potential functions play an important 
role here. We then in Sec.5(Support Vector Machine)  Next, in Sec.6(Nonlinear Discriminants 
and Neural Networks)we see how some of the ideas from such linear discriminants can be 
extended to a class of very powerful algorithms such as backpropagation and others for 
multilayer neural networks; these neural techniques have a range of useful properties that 
have made them a mainstay in contemporary pattern recognition research. In Sec.7(Stochastic 
Methods)we discuss simulated annealing by the Boltzmann learning algorithm and other 
stochastic methods. We explore the behaviour of such algorithms with regard to the matter of 
local minima that can plague other neural methods. Sec.8(Unsupervised Learning and 
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Clustering),by addressing the case when input training patterns are not labelled, and that our 
recognizer must determine the cluster structure.  

 
2. Bayesian Decision Theory 
 

Suppose that we know both the prior probabilities )( jP   and the conditional densities 
)|( jxp  . Suppose further that we measure the features of a sample and discover that its 

value is x . How does this measurement influence our attitude concerning the true state of 
nature—that is, the category of the input? We note first that the(joint) probability density of 
finding a pattern that is in category j  and has feature value x  can be written in two ways: 

)()|()()|(),( jjjj PxpxpxPxP   . Rearranging these leads us to the answer to our 
question, which is called Bayes formula: 
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2.1 Two-Category Classification 
If we have an observation x  for which )|( 1 xP   is greater than )|( 2 xP  , we would 
naturally be inclined to decide that the true state of nature is 1 . Similarly, if )|( 2 xP   is 
greater than )|( 1 xP  , we would be inclined to choose 2 . Thus we have justified the 
following Bayes decision rule for minimizing the probability of error: 
 

2211 ),|()|(  decideotherwisexPxPifDecide   (3) 
 
In Eq. (1), )(xp  is a scale factor and unimportant for our problem. By using Eq.(1), we can 
instead express the rule in terms of the conditional and prior probabilities. And we notice 

1))|()|( 21  xPxP  . By eliminating this scale factor, we obtain the following completely 
equivalent decision rule: 
 

222111 ),()|()()|(  decideotherwisePxpPxpifDecide   (4) 
 
While the two-category case is just a special instance of the multi-category case, it has 
traditionally received separate treatment.Indeed,a classifier that places a pattern in one of 
only two categories has a special name—a dichotomizer. Instead of using two dichotomizer 
discriminant functions 1g  and 2g  and assigning x  toω1 if 1g > 2g , it is more common 
to define a single discriminant function 

)()()( 21 xgxgxg   (5) 
 
and to use the following decision rule: 

21 ,0)(  decideotherwisexgifDecide    
Thus, a dichotomizer can be viewed as a machine that computes a single discriminant 
function )(xg , and classifies x  according to the algebraic sign of the result. Of the various 
forms in which the minimum-error-rate discriminant function can be written, the following 
two(derived from Eqs.(1)&(5)are particularly convenient: 
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2.2 Multi-Category Classification 
Let c ,,1   be the finite set of c  states of nature. Let the feature vector x  be a d -
component vector-valued random variable, and let )|( jxP   be the state- conditional 
probability density function for x —the probability density function for x  conditioned on 

j  being the true state of nature. As before, )( jP   describes the prior probability that 

nature is in state j . Then the posterior probability )|( xP j  can be computed from 

)|( jxp   by Bayes formula: 
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where the evidence is now 
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A Bayes classifier is easily and naturally represented in this way. For the minimum-error-
rate case, we can simplify things further by taking gi(x)=P(ωi|x),so that the maximum 
discriminant function corresponds to the maximum posterior probability. 
Clearly, the choice of discriminant functions is not unique. We can always multiply all the 
discriminant functions by the same positive constant or shift them by the same additive 
constant without influencing the decision. More generally, if we replace every )(xg  by 

))(( xgf , where )(f  is a monotonically increasing function, the resulting classification is 
unchanged. This observation can lead to significant analytical and computational 
simplifications. In particular, for minimum-error-rate classification, any of the following 
choices gives identical classification results, but some can be much simpler to understand or 
to compute than others: 
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where ln denotes natural logarithm. 

 
3. Maximum-likelihood Method 
 

It is important to distinguish between supervised learning and unsupervised learning. In 
both cases, samples x  are assumed to be obtained by selecting a state of nature i  with 
probability )( iP  ,and then independently selecting x  according to the probability law 

)|( ixp  . The distinction is that with supervised learning we know the state of nature(class 
label)for each sample, whereas with unsupervised learning we do not. As one would expect, 
the problem of unsupervised learning is the more difficult one. In this section we shall 
consider only the supervised case, deferring consideration of unsupervised learning to 
Section 8. 
The problem of parameter estimation is a classical one in statistics, and it can be approached 
in several ways. We shall consider two common and reasonable procedures, maximum 
likelihood estimation and Bayesian estimation. Although the results obtained with these two 
procedures are frequently nearly identical, the approaches are conceptually quite different. 
Maximum likelihood and several other methods view the parameters as quantities whose 
values are fixed but unknown. The best estimate of their value is defined to be the one that 
maximizes the probability of obtaining the samples actually observed. In contrast, Bayesian 
methods view the parameters as random variables having some known a priori distribution. 
Observation of the samples converts this to a posterior density, thereby revising our opinion 
about the true values of the parameters. In the Bayesian case, we shall see that a typical 
effect of observing additional samples is to sharpen the a posteriori density function, 
causing it to peak near the true values of the parameters. This phenomenon is known as 
Bayesian learning. In either case, we use the posterior densities for our classification rule, as 
we have seen before. 

 
3.1 Maximum Likelihood 
Maximum likelihood estimation methods have a number of attractive attributes. First, they 
nearly always have good convergence properties as the number of train- ing samples 
increases. Further, maximum likelihood estimation often can be simpler than alternate 
methods, such as Bayesian techniques or other methods presented in subsequent section. 
Suppose that we separate a collection of samples according to class, so that we have c sets, 

cDD ,,1  , with the samples in iD  having been drawn independently according to the 
probability law )|( ixp  . We say such samples are i.i.d.—independent identically 
distributed random variables. We assume that )|( ixp   has a known parametric form, and 
is therefore determined uniquely by the value of a parameter vector i . For example, we 

might have )|( ixp  ～ ),( iiN  , where i  consists of the components of i  and i . To 
show the dependence of )|( ixp   on i  explicitly, we write )|( ixp   as ),|( iixp  . Our 
problem is to use the information provided by the training samples to obtain good estimates 
for the unknown parameter vectors c ,,1   associated with each category. 
To simplify treatment of this problem, we shall assume that samples in iD  give no 
information about i  if ji  —that is, we shall assume that the parameters for the different 
classes are functionally independent. This permits us to work with each class separately, 
and to simplify our notation by deleting indications of class distinctions. With this 
assumption we thus have c separate problems of the following form: Use a set D  of 
training samples drawn independently from the probability density p(x|θ)to estimate the 
unknown parameter vector  . 
Suppose that D  contains n  samples, nxx ,,1  . Then, since the samples were drawn 
independently, we have 
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Viewed as a function of  , )|( Dp  is called the likelihood of   with respect to the set of 
samples. The maximum likelihood estimate of   is, by definition, the value   that 
maximizes )|( Dp . Intuitively, this estimate corresponds to the value of   that in some 
sense best agrees with or supports the actually observed training samples. 
For analytical purposes, it is usually easier to work with the logarithm of the likelihood than 
with the likelihood itself. Since the logarithm is monotonically increasing, the   that 
maximizes the log-likelihood also maximizes the likelihood. If )|( Dp  is a well behaved, 
differentiable function of  ,   can be found by the standard methods of differential 
calculus. If the number of parameters to be set is p , then we let   denote the p -component 
vector T
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We define )(L  as the log-likelihood function? 
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We can then write our solution formally as the argument   that maximizes the log- 
likelihood, i.e., 
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where ln denotes natural logarithm. 
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Viewed as a function of  , )|( Dp  is called the likelihood of   with respect to the set of 
samples. The maximum likelihood estimate of   is, by definition, the value   that 
maximizes )|( Dp . Intuitively, this estimate corresponds to the value of   that in some 
sense best agrees with or supports the actually observed training samples. 
For analytical purposes, it is usually easier to work with the logarithm of the likelihood than 
with the likelihood itself. Since the logarithm is monotonically increasing, the   that 
maximizes the log-likelihood also maximizes the likelihood. If )|( Dp  is a well behaved, 
differentiable function of  ,   can be found by the standard methods of differential 
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We define )(L  as the log-likelihood function? 
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We can then write our solution formally as the argument   that maximizes the log- 
likelihood, i.e., 
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where the dependence on the data set D  is implicit. Thus we have from Eq.(13) 
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Thus, a set of necessary conditions for the maximum likelihood estimate for   can be 
obtained from the set of p  equations 
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A solution   to Eq.(19) could represent a true global maximum, a local maximum or 
minimum, or(rarely)an inflection point of )(L . One must be careful, too, to check if the 
extremum occurs at a boundary of the parameter space, which might not be apparent from 
the solution to Eq.(19). If all solutions are found, we are guaranteed that one represents the 
true maximum, though we might have to check each solution individually(or calculate 
second derivatives)to identify which is the global optimum. Of course, we must bear in 
mind that  is an estimate; it is only in the limit of an infinitely large number of training 
points that we can expect that our estimate will equal to the true value of the generating 
function. 

 
3.2 Bayesian estimation 
We now consider the Bayesian estimation or Bayesian learning approach to pattern 
classification problems. Although the answers we get by this method will generally be 
nearly identical to those obtained by maximum likelihood, there is a conceptual difference: 
whereas in maximum likelihood methods we view the true parameter vector we seek,  , to 
be fixed, in Bayesian learning we consider   to be a random variable, and training data 
allows us to convert a distribution on this variable into a posterior probability density. 
The computation of the posterior probabilities )|( xP i  lies at the heart of Bayesian 
classification. Bayes formula allows us to compute these probabilities from the prior 
probabilities )( iP   and the class-conditional densities )|( ixp  , but how can we proceed 
when these quantities are unknown? The general answer to this question is that the best we 
can do is to compute )|( xP i  using all of the information at our disposal. Part of this 
information might be prior knowledge, such as knowledge of the functional forms for 
unknown densities and ranges for the values of unknown parameters. Part of this 
information might reside in a set of training samples. If we again let D denote the set of 
samples, then we can emphasize the role of the samples by saying that our goal is to 
compute the posterior probabilities ),|( DxP i . From these probabilities we can obtain the 
Bayes classifier. 
Given the sample D , Bayes formula then becomes 
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As this equation suggests, we can use the information provided by the training samples to 
help determine both the class-conditional densities and the a priori probabilities. 
Although we could maintain this generality, we shall henceforth assume that the true values 
of the a priori probabilities are known or obtainable from a trivial calculation; thus we 
substitute )|()( DPP ii   . Furthermore, since we are treating the supervised case, we can 
separate the training samples by class into c  subsets cDD ,,1   with the samples in iD  
belonging to i . As we mentioned when addressing maximum likelihood methods, in most 
cases of interest(and in all of the cases we shall consider), the samples in iD  have no 
influence on ),|( Dxp j  if ji  . This has two simplifying consequences. First, it allows us 
to work with each class separately, using only the samples in iD  to determine ),|( Dxp i . 
Used in conjunction with our assumption that the prior probabilities are known, this allows 
us to write Eq. 23 as 
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Second, because each class can be treated independently, we can dispense with needless 
class distinctions and simplify our notation. In essence, we have c separate problems of the 
following form: use a set D  of samples drawn independently according to the fixed but 
unknown probability distribution p(x)to determine )|( Dxp .This is the central problem of 
Bayesian learning. 

 
4. Nonparametric Techniques 
 

We treat supervised learning under the assumption that the forms of the underlying density 
functions are known in the last section. But in most pattern recognition applications, the 
common parametric forms rarely fit the densities. In this section we shall examine 
nonparametric procedures that can be used with arbitrary distributions and without the 
assumption that the forms of the underlying densities are known. 
There are several types of nonparametric methods of interest in pattern recognition. One is 
to estimate the density functions )|( jxp   from sample. And it can be substituted for the 
true densities. Another is to estimate a posteriori probabilities )|( xP j  directly. such as the 
nearest-neighbor rule Finally, there are nonparametric procedures for transforming the 
feature space in the hope that it may be possible to employ parametric methods in the 
transformed space. 
The following obvious estimate for )(xp : 
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Although we could maintain this generality, we shall henceforth assume that the true values 
of the a priori probabilities are known or obtainable from a trivial calculation; thus we 
substitute )|()( DPP ii   . Furthermore, since we are treating the supervised case, we can 
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Second, because each class can be treated independently, we can dispense with needless 
class distinctions and simplify our notation. In essence, we have c separate problems of the 
following form: use a set D  of samples drawn independently according to the fixed but 
unknown probability distribution p(x)to determine )|( Dxp .This is the central problem of 
Bayesian learning. 

 
4. Nonparametric Techniques 
 

We treat supervised learning under the assumption that the forms of the underlying density 
functions are known in the last section. But in most pattern recognition applications, the 
common parametric forms rarely fit the densities. In this section we shall examine 
nonparametric procedures that can be used with arbitrary distributions and without the 
assumption that the forms of the underlying densities are known. 
There are several types of nonparametric methods of interest in pattern recognition. One is 
to estimate the density functions )|( jxp   from sample. And it can be substituted for the 
true densities. Another is to estimate a posteriori probabilities )|( xP j  directly. such as the 
nearest-neighbor rule Finally, there are nonparametric procedures for transforming the 
feature space in the hope that it may be possible to employ parametric methods in the 
transformed space. 
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4.1 Parzen Windows 
Assume that the region nR  is a d -dimensional hypercube. hn is the length of an edge of 
that hypercube, then its volume is given by 
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Define the window function as  
 



 


otherwise
u

u j

0
2/1||1

)( dj ,,1  (24) 

 
The number of samples in this hypercube is given by 
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Substitute this into Eq (22). we obtain the estimate 
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Eq.(26) expresses the estimate for )(xp as an average of functions of x and the samples xi. In 
essence, the window function is being used for interpolation—each sample contributing to 
the estimate in accordance with its distance from x. 
It is natural to ask that the estimate )(xpn  be a legitimate density function. We can require 
that 

0)( x ,  (27) 
and 
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Maintain the relation d

nn hV  , then the )(xpn  also satisfies these conditions. 
Define )(xn  by 
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Then )(xpn  can be written as the average 
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Since d

nn hV  , nh  clearly affects both the amplitude and the width of )(xn . If nh  is very 
large, the amplitude of )(xn  is small, and x must be far from xi before )( in xx  changes 
much from )0(n .In this case, pn(x) is the superposition of n broad, slowly changing 
functions and is a very smooth “out-of-focus” estimate of )(xp . On the other hand, if nh  is 
very small, the peak value of )( in xx   is large and occurs near x=xi. In this case )(xp  is the 
superposition of n sharp pulses centered at the samples—an erratic, “noisy” estimate. For 
any value of nh , the distribution is normalized, that is 
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Let nV  slowly approach zero as n increases and )(xpn  converges to the unknown density 
p(x). )(xpn  has some mean )(xpn and variance )(2 xn . )(xpn  converges to p(x) if 
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To prove convergence we must place conditions on the unknown density )(xp , on the 
window function )(u , and on the window width nh . In general, continuity of )(p  at x  is 
required, and the conditions imposed by Eqs.(27)&(28) are customarily invoked. With care, 
it can be shown that the following additional conditions assure convergence: 
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Equations (34)&(35) keep )(  well behaved, and are satisfied by most density functions that 
one might think of using for window functions. Equations (36)&(37) state that the volume 

nV  must approach zero, but at a rate slower than n/1 . We shall now see why these are the 
basic conditions for convergence. 
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window function )(u , and on the window width nh . In general, continuity of )(p  at x  is 
required, and the conditions imposed by Eqs.(27)&(28) are customarily invoked. With care, 
it can be shown that the following additional conditions assure convergence: 
 

)(sup u


 (34) 
 

0)(lim
1||||


 i

d

i
u 


 (35) 

 
0lim 

 nn
V  (36) 

 


 nn
nVlim  (37) 

Equations (34)&(35) keep )(  well behaved, and are satisfied by most density functions that 
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basic conditions for convergence. 
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4.2 nk –Nearest-Neighbor Estimation 
A potential remedy for the problem of the unknown “best” window function is to let the cell 
volume be a function of the training data, rather than some arbitrary function of the overall 
number of samples. For example, to estimate p(x)from n training samples or prototypes we 
can center a cell about x  and let it grow until I captures nk  samples, where nk  is some 
specified function of n. These samples are the nk  nearest-neighbors of x . It the density is 
high near x , the cell will be relatively small, which leads to good resolution. If the density is 
low, it is true that the cell will grow large, but it will stop soon after it enters regions of 
higher density. In either case, if we take 
 

n

n

V
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we want nk  to go to infinity as n  goes to infinity, since this assures us that nkn /  will be a 
good estimate of the probability that a point will fall in the cell of volume nV . However, we 
also want nk  to grow sufficiently slowly that the size of the cell needed to capture nk  
training samples will shrink to zero. Thus, it is clear from Eq.(38) that the ratio nkn /  must go 
to zero. Although we shall not supply a proof, it can be shown that the conditions 

 nn
klim  

and 0/lim 


nknn
  are necessary and sufficient for )(xpn  to converge to p(x)in probability at 

all points where )(xp  is continuous. If we take nkn   and assume that )(xpn  is a 

reasonably good approximation to )(xp  we then see from Eq.(38) that ))(/(1 xpnVn  . Thus, 

nV  again has the form nV /1 , but the initial volume 1V  is determined by the nature of the 
data rather than by some arbitrary choice on our part. Note that there are nearly always 
discontinuities in the slopes of these estimates, and these lie away from the prototypes 
themselves.  

 
5. Support Vector Machine 
 

In a support vector machine, the direct decision function that maximizes the generalization 
ability is determined for a two-class problem. Assuming that the training data of different 
classes do not overlap, the decision function is determined so that the distance from the 
training data is maximized. We call this the optimal decision function. Because it is difficult 
to determine a nonlinear decision function, the original input space is mapped into a high-
dimensional space called feature space. And in the feature space, the optimal decision 
function, namely, the optimal hyper-plane is determined. 
Support vector machines outperform conventional classifiers, especially when the number 
of training data is small and the number of input variables is large. This is because the 
conventional classifiers do not have the mechanism to maximize the margins of class 
boundaries. Therefore, if we introduce some mechanism to maximize margins, the 
generalization ability is improved. 
If the decision function is linear, namely, )(xgi  is given by 

bxwxg T
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where w  is an m-dimensional vector and b  is a bias term, and if one class is on the positive 
side of the hyper-plane, i.e., 0)( xgi , and the other class is on the negative side, the given 
problem is said to be linearly separable. 

 
5.1 Indirect Decision Functions 
For an )2(n -class problem, suppose we have indirect decision functions )(xgi  for classes 
i . To avoid unclassifiable regions, we classify x  into class j given by 
 

)(maxarg xgj ii
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where arg  returns the subscript with the maximum value of )(xgi .If more than one 
decision function take the same maximum value for x , namely, x  is on the class boundary, 
it is not classifiable. 
In the following we discuss several methods to obtain the direct decision functions for 
multi-class problems. 
The first approach is to determine the decision functions by the one-against-all formulation. 
We determine the i th decision function )(xgi ni ,,1 , so that when x  belongs to class i , 
 

0)( xg i  (41) 
 
and when x belongs to one of the remaining classes, 
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When x  is given, we classify x  into class i  if 0)( xgi  and 0)( xg j  njij ,,1,   . But 
by these decision functions, unclassifiable regions exist when more than one decision 
function are positive or no decision functions are positive.  
The second approach is based on a decision tree. It is considered to be a variant of one-
against-all formulation. We determine the i th decision function )(xgi ni ,,1 , so that 
when x  belongs to class i , 
 

0)( xgi  (43) 
and when x  belongs to one of the classes ni ,,1 , 
 

0)( xg i  (44) 
 
In classifying x , starting from )(1 xg , we find the first positive )(xgi  and classify x  into 
class i . If there is no such i  among )(xgi ( ni ,,1 ), we classify x  into class n . 
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4.2 nk –Nearest-Neighbor Estimation 
A potential remedy for the problem of the unknown “best” window function is to let the cell 
volume be a function of the training data, rather than some arbitrary function of the overall 
number of samples. For example, to estimate p(x)from n training samples or prototypes we 
can center a cell about x  and let it grow until I captures nk  samples, where nk  is some 
specified function of n. These samples are the nk  nearest-neighbors of x . It the density is 
high near x , the cell will be relatively small, which leads to good resolution. If the density is 
low, it is true that the cell will grow large, but it will stop soon after it enters regions of 
higher density. In either case, if we take 
 

n

n

V
nkxp /)(   (38) 

 
we want nk  to go to infinity as n  goes to infinity, since this assures us that nkn /  will be a 
good estimate of the probability that a point will fall in the cell of volume nV . However, we 
also want nk  to grow sufficiently slowly that the size of the cell needed to capture nk  
training samples will shrink to zero. Thus, it is clear from Eq.(38) that the ratio nkn /  must go 
to zero. Although we shall not supply a proof, it can be shown that the conditions 

 nn
klim  

and 0/lim 


nknn
  are necessary and sufficient for )(xpn  to converge to p(x)in probability at 

all points where )(xp  is continuous. If we take nkn   and assume that )(xpn  is a 

reasonably good approximation to )(xp  we then see from Eq.(38) that ))(/(1 xpnVn  . Thus, 

nV  again has the form nV /1 , but the initial volume 1V  is determined by the nature of the 
data rather than by some arbitrary choice on our part. Note that there are nearly always 
discontinuities in the slopes of these estimates, and these lie away from the prototypes 
themselves.  

 
5. Support Vector Machine 
 

In a support vector machine, the direct decision function that maximizes the generalization 
ability is determined for a two-class problem. Assuming that the training data of different 
classes do not overlap, the decision function is determined so that the distance from the 
training data is maximized. We call this the optimal decision function. Because it is difficult 
to determine a nonlinear decision function, the original input space is mapped into a high-
dimensional space called feature space. And in the feature space, the optimal decision 
function, namely, the optimal hyper-plane is determined. 
Support vector machines outperform conventional classifiers, especially when the number 
of training data is small and the number of input variables is large. This is because the 
conventional classifiers do not have the mechanism to maximize the margins of class 
boundaries. Therefore, if we introduce some mechanism to maximize margins, the 
generalization ability is improved. 
If the decision function is linear, namely, )(xgi  is given by 

bxwxg T
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where w  is an m-dimensional vector and b  is a bias term, and if one class is on the positive 
side of the hyper-plane, i.e., 0)( xgi , and the other class is on the negative side, the given 
problem is said to be linearly separable. 

 
5.1 Indirect Decision Functions 
For an )2(n -class problem, suppose we have indirect decision functions )(xgi  for classes 
i . To avoid unclassifiable regions, we classify x  into class j given by 
 

)(maxarg xgj ii
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where arg  returns the subscript with the maximum value of )(xgi .If more than one 
decision function take the same maximum value for x , namely, x  is on the class boundary, 
it is not classifiable. 
In the following we discuss several methods to obtain the direct decision functions for 
multi-class problems. 
The first approach is to determine the decision functions by the one-against-all formulation. 
We determine the i th decision function )(xgi ni ,,1 , so that when x  belongs to class i , 
 

0)( xg i  (41) 
 
and when x belongs to one of the remaining classes, 
 

0)( xgi  (42) 
 
When x  is given, we classify x  into class i  if 0)( xgi  and 0)( xg j  njij ,,1,   . But 
by these decision functions, unclassifiable regions exist when more than one decision 
function are positive or no decision functions are positive.  
The second approach is based on a decision tree. It is considered to be a variant of one-
against-all formulation. We determine the i th decision function )(xgi ni ,,1 , so that 
when x  belongs to class i , 
 

0)( xgi  (43) 
and when x  belongs to one of the classes ni ,,1 , 
 

0)( xg i  (44) 
 
In classifying x , starting from )(1 xg , we find the first positive )(xgi  and classify x  into 
class i . If there is no such i  among )(xgi ( ni ,,1 ), we classify x  into class n . 
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The decision functions change if we determine decision functions in descending order or in 
an arbitrary order of class labels. Therefore, in this architecture, we need to determine the 
decision functions so that classification performance in the upper level of the tree is more 
accurate than in the lower one. Otherwise, the classification performance may not be good. 
Pair-wise Formulation 
The third approach is to determine the decision functions by pair-wise formulation. For 
classes i and j we determine the decision function )(xgij ( njiji ,,1,,,  , so that 
 

0)( xg ij  (45) 
 
when x  belongs to class i  and 
 

0)( xg ij  (46) 
 
when x  belongs to class j . 
In this formulation, )()( xgxg jiij  , and we need to determine n(n?1)/2 decision functions. 
Classification is done by voting, namely, we calculate )(xgi  
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and we classify x  into the class with the maximum )(xgi . By this formulation also, 
unclassifiable regions exist if )(xgi  take the maximum value for more than one class. These 
can be resolved by decision-tree formulation or by introducing membership functions. 
The fourth approach is to use error-correcting codes for encoding outputs. One-against-all 
formulation is a special case of error-correcting code with no error-correcting capability, and 
so is pair-wise formulation, as if“don’t”care bits are introduced. 
The fifth approach is to determine decision functions at all once. Namely, we determine the 
decision functions )(xgi  by 
 

)()( xgxg ji   for njij ,,1,   (49) 
In this formulation we need to determine n decision functions at all once. This results in 
solving a problem with a larger number of variables than the previous methods. Unlike one-
against-all and pair-wise formulations, there is no unclassifiable region. 
Determination of decision functions using input-output pairs is called training. In training a 
multilayer neural network for a two-class problem, we can determine a direct decision 
function if we set one output neuron instead of two. But because for an n-class problem we 
set n output neurons with the i th neuron corresponding to the class i decision function, the 
obtained functions are indirect. Similarly, decision functions for fuzzy classifiers are indirect 
because membership functions are defined for each class. Conventional training methods 

determine the indirect decision functions so that each training input is correctly classified 
into the class designated by the associated training output. Assuming that the circles and 
rectangles are training data for Classes 1 and 2, respectively, even if the decision function 

)(2 xg  moves to the right as shown in the dotted curve, the training data are still correctly 
classified. Thus there are infinite possibilities of the positions of the decision functions that 
correctly classify the training data. Although the generalization ability is directly affected by 
the positions, conventional training methods do not consider this. 

 
5.2 Linear Learning Machines 
In training a classifier, usually we try to maximize classification performance for the training 
data. But if the classifier is too fit for the training data, the classification ability for unknown 
data, i.e., the generalization ability is degraded. This phenomenon is called over-fitting. 
Namely, there is a trade-of between the generalization ability and fitting to the training data. 
For a two-class problem, a support vector machine is trained so that the direct decision 
function maximizes the generalization ability. Namely, the m -dimensional input space x is 
mapped into the l -dimensional( l ≥ m )feature space z . Then in z , the quadratic 
programming problem is solved to separate two classes by the optimal separating hyper-
plane. One of the main ideas is, like support vector machines, to add a regularization term, 
which controls the generalization ability, to the objective function. 
Let M m -dimensional training inputs ix ( Mi ,,1 ) belong to Class 1 or 2 and the 
associated labels be 1iy  for Class 1 and -1 for Class 2. If these data are linearly separable, 
we can determine the decision function: 
 

bxwxD i
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where w  is an m-dimensional vector, b  is a bias term, and for Mi ,,1
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Because the training data are linearly separable, no training data satisfy 0 bxw i

T . Thus, 
to control separability, instead of(51),we consider the following inequalities: 
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Equation(2.3)is equivalent to 
 

1)(  bxwy i
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i  for Mi ,,1  (53) 
 
The hyper-plane 
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The decision functions change if we determine decision functions in descending order or in 
an arbitrary order of class labels. Therefore, in this architecture, we need to determine the 
decision functions so that classification performance in the upper level of the tree is more 
accurate than in the lower one. Otherwise, the classification performance may not be good. 
Pair-wise Formulation 
The third approach is to determine the decision functions by pair-wise formulation. For 
classes i and j we determine the decision function )(xgij ( njiji ,,1,,,  , so that 
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when x  belongs to class i  and 
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when x  belongs to class j . 
In this formulation, )()( xgxg jiij  , and we need to determine n(n?1)/2 decision functions. 
Classification is done by voting, namely, we calculate )(xgi  
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and we classify x  into the class with the maximum )(xgi . By this formulation also, 
unclassifiable regions exist if )(xgi  take the maximum value for more than one class. These 
can be resolved by decision-tree formulation or by introducing membership functions. 
The fourth approach is to use error-correcting codes for encoding outputs. One-against-all 
formulation is a special case of error-correcting code with no error-correcting capability, and 
so is pair-wise formulation, as if“don’t”care bits are introduced. 
The fifth approach is to determine decision functions at all once. Namely, we determine the 
decision functions )(xgi  by 
 

)()( xgxg ji   for njij ,,1,   (49) 
In this formulation we need to determine n decision functions at all once. This results in 
solving a problem with a larger number of variables than the previous methods. Unlike one-
against-all and pair-wise formulations, there is no unclassifiable region. 
Determination of decision functions using input-output pairs is called training. In training a 
multilayer neural network for a two-class problem, we can determine a direct decision 
function if we set one output neuron instead of two. But because for an n-class problem we 
set n output neurons with the i th neuron corresponding to the class i decision function, the 
obtained functions are indirect. Similarly, decision functions for fuzzy classifiers are indirect 
because membership functions are defined for each class. Conventional training methods 

determine the indirect decision functions so that each training input is correctly classified 
into the class designated by the associated training output. Assuming that the circles and 
rectangles are training data for Classes 1 and 2, respectively, even if the decision function 

)(2 xg  moves to the right as shown in the dotted curve, the training data are still correctly 
classified. Thus there are infinite possibilities of the positions of the decision functions that 
correctly classify the training data. Although the generalization ability is directly affected by 
the positions, conventional training methods do not consider this. 

 
5.2 Linear Learning Machines 
In training a classifier, usually we try to maximize classification performance for the training 
data. But if the classifier is too fit for the training data, the classification ability for unknown 
data, i.e., the generalization ability is degraded. This phenomenon is called over-fitting. 
Namely, there is a trade-of between the generalization ability and fitting to the training data. 
For a two-class problem, a support vector machine is trained so that the direct decision 
function maximizes the generalization ability. Namely, the m -dimensional input space x is 
mapped into the l -dimensional( l ≥ m )feature space z . Then in z , the quadratic 
programming problem is solved to separate two classes by the optimal separating hyper-
plane. One of the main ideas is, like support vector machines, to add a regularization term, 
which controls the generalization ability, to the objective function. 
Let M m -dimensional training inputs ix ( Mi ,,1 ) belong to Class 1 or 2 and the 
associated labels be 1iy  for Class 1 and -1 for Class 2. If these data are linearly separable, 
we can determine the decision function: 
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where w  is an m-dimensional vector, b  is a bias term, and for Mi ,,1
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Because the training data are linearly separable, no training data satisfy 0 bxw i

T . Thus, 
to control separability, instead of(51),we consider the following inequalities: 
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Equation(2.3)is equivalent to 
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The hyper-plane 
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forms a separating hyper-plane that separates ix  ( Mi ,,1 ). When 0c , the separating 
hyper-plane is in the middle of the two hyper-planes with 1c  and 1 . The distance 
between the separating hyper-plane and the training datum nearest to the hyper-plane is 
called the margin. Assuming that the hyper-planes 1)( xD  and 1  include at least one 
training datum, the hyper-plane 0)( xD  has the maximum margin for 11  c . The 
region }1)(1|{  xDx  is the generalization region for the decision function. 
Now consider determining the optimal separating hyper-plane. The Euclidean distance 
from a training datum x  to the separating hyper-plane is given by wxD /|)(| . Because the 
vector w  is orthogonal to the separating hyper-plane, the line that goes through x  and that 
is orthogonal to the hyper-plane is given by xwaw ||||/ , where || a  is the Euclidean 
distance from x to the hyper-plane. It crosses the hyper-plane at the point where 
 

0)||||/( xwawD  (55) 
 
is satisfied.  Solving(2.6)for a , we obtain wxDa /)( . 
Then all the training data must satisfy 
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Where   is the margin. 
Now if ( bw, ) is a solution, ( abaw, ) is also a solution, where a  is a scalar. Thus we impose 
the following constraint: 
 

1w  (57) 
 
From (56) and (57),to find the optimal separating hyper-plane, we need to find w with the 
minimum Euclidean norm that satisfies(52). Therefore, the optimal separating hyper-plane 
can be obtained by minimizing 

2||||
2
1)( wwQ   (58) 

 
with respect to w and b subject to the constraints: 
 

1)(  bxwy i
T

i for Mi ,,1  (59) 
 
Here, the square of the Euclidean norm w  in (58) is to make the optimization problem 
quadratic programming. The assumption of linear separability means that there exist w and 
b that satisfy (59).We call the solutions that satisfy (2.10) feasible solutions. Because the 
optimization problem has the quadratic objective function with the inequality constraints, 
even if the solutions are non-unique, the value of the objective function is unique(see Section 
2.6.4).Thus non-uniqueness is not a problem for support vector machines. This is one of the 

advantages of support vector machines over neural networks, which have numerous local 
minima. 

 
5.3 SVM and Change-point Theory 
To detect the change-points in signal data is an important practical problem. The classical 
method to solve this problem is using the statistical algorithms which are based on Bayesian 
theory. The efficiency of these methods always depends on the character of the given data. 
In this paper, we introduce support vector machine method to detect the abrupt change on 
signal data. The experience shows that the idea is effective, and it does not limit to the 
character of the distribution. 
Consider time series )1()1(
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distribution (1), and the following data occur with the other distribution. The time series is 
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where k  is greatly less than m  and mn  .  
We assume that the change-point is at m , and the changing information has been 
distributed to several distinct and continuous iy ’s. the vectors contain only the point on 
state (1) and state (2) are classifiable since the different distributions. Of course, it seems 
arbitrary here. We must do a great deal of experience to support this point of view.  
In this paper, we illustrate our method to detect change-point with support vector machine 
method firstly in next section. The result of experience shows that the method is effective. 
And in the third section, we discuss on the detail of method. After that, the last section is our 
conclusion. . 
 

    
Fig. 1. Plots of train data and test data 
 
The method is still effective for classifying the samples from the distributions with distinct 
variance. Let us consider a new simulation data set. The randomizer produces 100 samples 



Methods for Pattern Classification 63

forms a separating hyper-plane that separates ix  ( Mi ,,1 ). When 0c , the separating 
hyper-plane is in the middle of the two hyper-planes with 1c  and 1 . The distance 
between the separating hyper-plane and the training datum nearest to the hyper-plane is 
called the margin. Assuming that the hyper-planes 1)( xD  and 1  include at least one 
training datum, the hyper-plane 0)( xD  has the maximum margin for 11  c . The 
region }1)(1|{  xDx  is the generalization region for the decision function. 
Now consider determining the optimal separating hyper-plane. The Euclidean distance 
from a training datum x  to the separating hyper-plane is given by wxD /|)(| . Because the 
vector w  is orthogonal to the separating hyper-plane, the line that goes through x  and that 
is orthogonal to the hyper-plane is given by xwaw ||||/ , where || a  is the Euclidean 
distance from x to the hyper-plane. It crosses the hyper-plane at the point where 
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Where   is the margin. 
Now if ( bw, ) is a solution, ( abaw, ) is also a solution, where a  is a scalar. Thus we impose 
the following constraint: 
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From (56) and (57),to find the optimal separating hyper-plane, we need to find w with the 
minimum Euclidean norm that satisfies(52). Therefore, the optimal separating hyper-plane 
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Here, the square of the Euclidean norm w  in (58) is to make the optimization problem 
quadratic programming. The assumption of linear separability means that there exist w and 
b that satisfy (59).We call the solutions that satisfy (2.10) feasible solutions. Because the 
optimization problem has the quadratic objective function with the inequality constraints, 
even if the solutions are non-unique, the value of the objective function is unique(see Section 
2.6.4).Thus non-uniqueness is not a problem for support vector machines. This is one of the 

advantages of support vector machines over neural networks, which have numerous local 
minima. 

 
5.3 SVM and Change-point Theory 
To detect the change-points in signal data is an important practical problem. The classical 
method to solve this problem is using the statistical algorithms which are based on Bayesian 
theory. The efficiency of these methods always depends on the character of the given data. 
In this paper, we introduce support vector machine method to detect the abrupt change on 
signal data. The experience shows that the idea is effective, and it does not limit to the 
character of the distribution. 
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where k  is greatly less than m  and mn  .  
We assume that the change-point is at m , and the changing information has been 
distributed to several distinct and continuous iy ’s. the vectors contain only the point on 
state (1) and state (2) are classifiable since the different distributions. Of course, it seems 
arbitrary here. We must do a great deal of experience to support this point of view.  
In this paper, we illustrate our method to detect change-point with support vector machine 
method firstly in next section. The result of experience shows that the method is effective. 
And in the third section, we discuss on the detail of method. After that, the last section is our 
conclusion. . 
 

    
Fig. 1. Plots of train data and test data 
 
The method is still effective for classifying the samples from the distributions with distinct 
variance. Let us consider a new simulation data set. The randomizer produces 100 samples 
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that submit to ),( 2
11 N  and the others that submit to ),( 2

22 N . Let 101  , 202  ，
52

1  , 102
2  . The randomizer produce 100 samples under two group of parameter 

respectively. These samples are taken as training data set. Repeat the steps to produce more 
60 and 40 samples under the different group of parameter. These samples act as test data set. 
The values of samples are described by figure below. 
The result of output file is list in the table below. The terms of columns are: (1) Dimension; 
(2) Accuracy on test set; (3) support vectors; (4) Count of incorrect samples; and (5) Mean 
Squared Error. 
 

k Accuracy SV incorrect MSE 
2 88.78% 100 11 0.890499 
3 90.63% 85 9 1.687711 
4 94.68% 74 5 1.437032 
5 96.74% 68 3 1.260453 
6 97.78% 62 2 1.098423 
7 97.73% 57 2 0.859724 
8 100.00% 55 0 0.814199 
9 100.00% 52 0 0.727360 
10 100.00% 53 0 0.754256 

Table 1. Result of experience 
 
We are interested in considering the location of the incorrect samples. Figure 4 tell us the 
information. 
 

           

           

           
Fig. 2. Predictions with SVMs which k vary from 2 to 10 

To detect the change-points in signal processing is an important practical problem. The 
classical method to solve this problem is using the statistical algorithms which are based on 
Bayesian theory. The efficiency of these methods always depends on the character of the 
given data. In this paper, we introduce support vector machine method to detect the abrupt 
change on signal data. A change-point detecting problem is transformed to a classification 
problem. The experience shows that the idea is effective, 

 
6. Neural Networks 
 

For classification, we will have c output units, one for each of the categories, and the signal 
from each output unit is the discriminant function )(xgk   as: 
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This, then, is the class of functions that can be implemented by a three-layer neural network. 
An even broader generalization would allow transfer functions at the output layer to differ 
from those in the hidden layer, or indeed even different functions at each individual unit. 
Kolmogorov proved that any continuous function )(xg defined on the unit hypercube  

nI  (I=[0,1]and n ≥ 2)can be represented in the form 
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or properly chosen functions jE  and )( iij x .  
We consider the training error on a pattern to be the sum over output units of the training 
squared difference between the desired output kt  (given by a teacher)and the actual error 
output kz , much as we had in the LMS algorithm for two-layer nets: 
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where t  and z  are the target and the network output vectors of length c ; w  represents all 
the weights in the network.  
The back propagation learning rule is based on gradient descent. The weights are initialized 
with random values, and are changed in a direction that will reduce the error: 
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1  , 102
2  . The randomizer produce 100 samples under two group of parameter 

respectively. These samples are taken as training data set. Repeat the steps to produce more 
60 and 40 samples under the different group of parameter. These samples act as test data set. 
The values of samples are described by figure below. 
The result of output file is list in the table below. The terms of columns are: (1) Dimension; 
(2) Accuracy on test set; (3) support vectors; (4) Count of incorrect samples; and (5) Mean 
Squared Error. 
 

k Accuracy SV incorrect MSE 
2 88.78% 100 11 0.890499 
3 90.63% 85 9 1.687711 
4 94.68% 74 5 1.437032 
5 96.74% 68 3 1.260453 
6 97.78% 62 2 1.098423 
7 97.73% 57 2 0.859724 
8 100.00% 55 0 0.814199 
9 100.00% 52 0 0.727360 
10 100.00% 53 0 0.754256 

Table 1. Result of experience 
 
We are interested in considering the location of the incorrect samples. Figure 4 tell us the 
information. 
 

           

           

           
Fig. 2. Predictions with SVMs which k vary from 2 to 10 

To detect the change-points in signal processing is an important practical problem. The 
classical method to solve this problem is using the statistical algorithms which are based on 
Bayesian theory. The efficiency of these methods always depends on the character of the 
given data. In this paper, we introduce support vector machine method to detect the abrupt 
change on signal data. A change-point detecting problem is transformed to a classification 
problem. The experience shows that the idea is effective, 

 
6. Neural Networks 
 

For classification, we will have c output units, one for each of the categories, and the signal 
from each output unit is the discriminant function )(xgk   as: 
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This, then, is the class of functions that can be implemented by a three-layer neural network. 
An even broader generalization would allow transfer functions at the output layer to differ 
from those in the hidden layer, or indeed even different functions at each individual unit. 
Kolmogorov proved that any continuous function )(xg defined on the unit hypercube  

nI  (I=[0,1]and n ≥ 2)can be represented in the form 
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or properly chosen functions jE  and )( iij x .  
We consider the training error on a pattern to be the sum over output units of the training 
squared difference between the desired output kt  (given by a teacher)and the actual error 
output kz , much as we had in the LMS algorithm for two-layer nets: 
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where t  and z  are the target and the network output vectors of length c ; w  represents all 
the weights in the network.  
The back propagation learning rule is based on gradient descent. The weights are initialized 
with random values, and are changed in a direction that will reduce the error: 
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where   is the learning rate, and merely indicates the relative size of the change in weights. 
This iterative algorithm requires taking a weight vector at iteration m and updating it as: 
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where m indexes the particular pattern presentation 

 
7. Stochastic Search  
 

Search methods based on evolution—genetic algorithms and genetic programming —
perform highly parallel stochastic searches in a space set by the designer. The fundamental 
representation used in genetic algorithms is a string of bits, or chromosome; the 
representation in genetic programming is a snippet of computer code. Variation is 
introduced by means of crossover, mutation and insertion. As with all classification methods, 
the better the features, the better the solution. There are many heuristics that can be 
employed and parameters that must be set. As the cost of computation contiues to decline, 
computationally intensive methods, such as Boltzmann networks and evolutionary methods, 
should become increasingly popular. 

 
7.1 Simulated annealing 
In physics, the method for allowing a system such as many magnets or atoms in an alloy to 
find a low-energy configuration is based on annealing. Annealing proceeds by gradually 
lowering the temperature of the system—ultimately toward zero and thus no randomness—
so as to allow the system to relax into a low-energy configuration. Such annealing is 
effective because even at moderately high temperatures, the system slightly favors regions 
in the configuration space that are overall lower in energy, and hence are more likely to 
contain the global minimum. As the temperature is lowered, the system has increased 
probability of finding the optimum configuration. 
This method is successful in a wide range of energy functions Fortunately, the problems in 
learning we shall consider rarely involve such pathological functions. 
The statistical properties of large number of interacting physical components at a 
temperature T , such as molecules in a gas or magnetic atoms in a solid, have been 
thoroughly analyzed. A key result, which relies on a few very natural assumptions, is the 
following: the probability the system is in a(discrete)configuration indexed by   
having energy E  is given by 
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where Z  is a normalization constant. The numerator is the Boltzmann factor and the 
denominator the partition function, the sum over all possible configurations  
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which guarantees Eq. 2 represents a true probability. The number of configurations is very 
high, N2 , and in physical systems Z can be calculated only in simple cases. Fortunately, we 
need not calculate the partition function, as we shall see. 

 
7.2 Genetic Algorithms 
In basic genetic algorithms, the fundamental representation of each classifier is a binary 
string, called a chromosome. The mapping from the chromosome to the features 
chromosome and other aspects of the classifier depends upon the problem domain, and the 
designer has great latitude in specifying this mapping. In pattern classification, the score is 
usually chosen to be some monotonic function of the accuracy on a data set, possibly with 
penalty term to avoid overfitting. We use a desired fitness, θ, as the stopping criterion. 
Before we discuss these points in more depth, we first consider more specifically the 
structure of the basic genetic algorithm, and then turn to the key notion of genetic operators, 
used in the algorithm. 
There are three primary genetic operators that govern reproduction: Crossover, Mutation 
and Selection.: Crossover involves the mixing—“mating”—of two chromosomes. A mating 
split point is chosen randomly along the length of either chromosome. The first part of 
chromosome A is spliced to the last part of chromosome B, and vice versa, thereby yielding 
two new chromosomes. Each bit in a single chromosome is given a small chance, Pmut, of 
being changed from a 1 to a 0 or vice versa. Other genetic operators may be employed, for 
instance inversion—where the chromosome is reversed front to back. This operator is used 
only rarely since inverting a chromosome with a high score nearly always leads to one with 
very low score. Below we shall briefly consider another operator, insertions. 
The process of selection specifies which chromosomes from one generation will be sources 
for chromosomes in the next generation. Up to here, we have assumed that the 
chromosomes would be ranked and selected in order of decreasing fitness until the next 
generation is complete. This has the benefit of generally pushing the population toward 
higher and higher scores. Nevertheless, the average improvement from one generation to 
the next depends upon the variance in the scores at a given generation, and because this 
standard fitness-based selection need not give high variance, other selection methods may 
prove superior. 
The principle alternative selection scheme is fitness-proportional selection, or fitness 
proportional reproduction, in which the probability that each chromosome is selecte is 
proportional to its fitness. While high-fitness chromosomes are preferentially selected, 
occasionally low-fitness chromosomes are selected, and this may preserve diversity and 
increase variance of the population. 
A minor modification of this method is to make the probability of selection proportional to 
some monotonically increasing function of the fitness. If the function instead has a positive 
second derivative, the probability that high-fitness chromosomes is enhanced. One version 
of this heuristic is inspired by the Boltzmann factor of Eq.2; the probability that chromosome 
i with fitness fi will be selected is 
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where   is the learning rate, and merely indicates the relative size of the change in weights. 
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high, N2 , and in physical systems Z can be calculated only in simple cases. Fortunately, we 
need not calculate the partition function, as we shall see. 
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where the expectation is over the current generation and T is a control parameter loosely 
referred to as a temperature. Early in the evolution the temperature is set high, giving all 
chromosomes roughly equal probability of being selected. Late in the evolution the 
temperature is set lower so as to find the chromosomes in the region of the optimal classifier. 
We can express such search by analogy to biology: early in the search the population 
remains diverse and explores the fitness landscape in search of promising areas; later the 
population exploits the specific fitness opportunities in a small region of the space of 
possible classifiers. 
When a pattern recognition problem involves a model that is discrete or of such high 
complexity that analytic or gradient descent methods are unlikely to work, we may employ 
stochastic techniques—ones that at some level rely on randomness to find model 
parameters.Simulated annealing,based on physical annealing of metals, consists in 
randomly perturbing the system,and gradually decreasing the randomness to a low final 
level,in order to find an optimal solution.Boltzmann learning trains the weights in a network 
so that the probability of a desired final output is increased. Such learning is based on 
gradient descent in the Kullback-Liebler divergence between two distributions of visible 
states at the output units:one distribution describes these units when clamped at the known 
category information, and the other when they are free to assume values based on the 
activations throughout the network. Some graphical models, such as hidden Markov models 
and Bayes belief networks, have counterparts in structured Boltzmann networks, and this 
leads to new applications of Boltzmann learning. 

 
8. Unsupervised Learning and Clustering 
 

Until now we have assumed that the training samples used to design a classifier were 
labelled by their category membership. Procedures that use labelled samples are said to be 
supervised. Now we shall investigate a number of unsupervised procedures, which use 
unlabeled samples.  
Let us reconsider our original problem of learning something of use from a set of unlabeled 
samples. Viewed geometrically, these samples may form clouds of points in a d -
dimensional space. Suppose that we knew that these points came from a single normal 
distribution. Then the most we could learn form the data would be contained in the 
sufficient statistics—the sample mean and the sample covariance matrix. In essence, these 
statistics constitute a compact description of the data. The sample mean locates the centre of 
gravity of the cloud; it can be thought of as the single point m  that best represents all of the 
data in the sense of minimizing the sum of squared distances from m to the samples. The 
sample covariance matrix describes the amount the data scatters along various directions. If 
the data points are actually normally distributed, then the cloud has a simple 
hyperellipsoidal shape, and the sample mean tends to fall in the region where the samples 
are most densely concentrated. 
If we assume that the samples come from a mixture of c normal distributions, we can 
approximate a greater variety of situations. In essence, this corresponds to assuming that the 
samples fall in hyperellipsoidally shaped clouds of various sizes and orientations. If the 
number of component densities is sufficiently high, we can approximate virtually any 
density function as a mixture model in this way, and use the parameters of the mixture to 
describe the data. Alas, we have seen that the problem of estimating the parameters of a 

mixture density is not trivial. Furthermore, in situations where we have relatively little prior 
knowledge about the nature of the data, the assumption of particular parametric forms may 
lead to poor or meaningless results. Instead of finding structure in the data, we would be 
imposing structure on it. 
One alternative is to use one of the nonparametric methods to estimate the unknown 
mixture density. If accurate, the resulting estimate is certainly a complete description of 
what we can learn from the data. Regions of high local density, which might correspond to 
significant subclasses in the population, can be found from the peaks or modes of the 
estimated density. 
If the goal is to find subclasses,a more direct alternative is to use a clustering procedure. 
Roughly speaking, clustering procedures yield a data description in terms clustering of 
clusters or groups of data points that possess strong internal similarities. Formalprocedure 
clustering procedures use a criterion function, such as the sum of the squared distances from 
the cluster centres, and seek the grouping that extremizes the criterion function. Because 
even this can lead to unmanageable computational problems, other procedures have been 
proposed that are intuitively appealing but that lead to solutions having few if any 
established properties. Their use is usually justified on the ground that they are easy to 
apply and often yield interesting results that may guide the application of more rigorous 
procedures. 

 
8.1 Similarity Measures 
The most obvious measure of the similarity(or dissimilarity)between two samples is the 
distance between them. One way to begin a clustering investigation is to define a suitable 
distance function and compute the matrix of distances between all pairs of samples. If 
distance is a good measure of dissimilarity, then one would expect the distance between 
samples in the same cluster to be significantly less than the distance between samples in 
different clusters. 
Suppose for the moment that we say that two samples belong to the same cluster if the 
Euclidean distance between them is less than some threshold distance 0d . It is immediately 
obvious that the choice of d0 is very important. If 0d  is very large, all of the samples will be 
assigned to one cluster. If 0d  is very small, each sample will form an isolated, singleton 
cluster. To obtain “natural” clusters, 0d  will have to be greater than the typical within-
cluster distances and less than typical between-cluster distances. 
Less obvious perhaps is the fact that the results of clustering depend on the choice of 
Euclidean distance as a measure of dissimilarity. That particular choice is generally justified 
if the feature space is isotropic and the data is spread roughly evenly a long all directions. 
Clusters defined by Euclidean distance will be invariant to translations or rotations in 
feature space—rigid-body motions of the data points. However, they will not be invariant to 
linear transformations in general, or to other transformations that distort the distance 
relationships. Thus, a simple scaling of the coordinate axes can result in a different grouping 
of the data into clusters. Of course, this is of no concern for problems in which arbitrary 
rescaling is an unnatural or meaningless transformation. However, if clusters are to mean 
anything, they should be invariant to transformations natural to the problem. 
One way to achieve invariance is to normalize the data prior to clustering. For example, to 
obtain invariance to displacement and scale changes, one might translate and scale the axes 
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so that all of the features have zero mean and unit variance— standardize the data. To 
obtain invariance to rotation, one might rotate the axes so that they coincide with the 
eigenvectors of the sample covariance matrix. This trans- formation to principal components 
can be preceded and/or followed by normalization for scale. 
However, we should not conclude that this kind of normalization is necessarily desirable. 
Consider, for example, the matter of translating and whitening—scaling the axes so that 
each feature has zero mean and unit variance. The rationale usually given for this 
normalization is that it prevents certain features from dominating distance calculations 
merely because they have large numerical values, much as we saw in networks trained with 
backpropagation. Subtracting the mean and dividing by the standard deviation is an 
appropriate normalization if this spread of values is due to normal random 
variation;however,it can be quite inappropriate if the spread is due to the presence of 
subclasses. 
Instead of scaling axes, we can change the metric in interesting ways. For instance, one 
broad class of distance metrics is of the form 
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where q ≥1 is a selectable parameter—the general Minkowski metric we considered in. 
Setting q =2 gives the familiar Euclidean metric while setting q =1 the Manhattan or city 
block metric—the sum of the absolute distances along each of the d  coordinate axes. Note 
that only q =2 is invariant to an arbitrary rotation or translation in feature space. Another 
alternative is to use some kind of metric based on the data itself, such as the Mahalanobis 
distance. 
More generally, one can abandon the use of distance altogether and introduce a nonmetric 
similarity function )',( xxs to compare two vectors x  and x . Convention-similarity ally, 
this is a symmetric functions whose value is large when x  and x  are somehowfunction 
“similar.” For example, when the angle between two vectors is a meaningful measure of 
their similarity, then the normalized inner product 
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may be an appropriate similarity function. This measure, which is the cosine of the angle 
between x  and x ,is invariant to rotation and dilation, though it is not invariant to 
translation and general linear transformations. 

 
8.2 Criterion Functions 
8.2.1 The Sum-of-Squared-Error Criterion 
The simplest and most widely used criterion function for clustering is the sum-of- squared-
error criterion. Let ni be the number of samples in iD  and let mi be the mean of those 
samples, 
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Then the sum-of-squared errors is defined by 
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8.2.2 Related Minimum Variance Criteria 
By some simple algebraic manipulation we can eliminate the mean vectors from the 
expression for eJ  and obtain the equivalent expression 
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Equation 51 leads us to interprets is  as the average squared distance between points in the  

i -th cluster, and emphasizes the fact that the sum-of-squared-error criterion uses Euclidean 
distance as the measure of similarity. It also suggests an obvious way of obtaining other 
criterion functions. For example, one can replaces is  by the average, the median, or perhaps 
the maximum distance between points in a cluster. More generally, one can introduce an 
appropriate similarity function s(x,x)and replaces is by functions such as 
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8.3 Hierarchical Clustering 
The most natural representation of hierarchical clustering is a corresponding tree, called a 
dendrogram, which shows how the samples are grouped. If it is possible to measure the 
similarity between clusters, then the dendrogram is usually drawn to scale to show the 
similarity between the clusters that are grouped. We shall see shortly how such similarity 
values can be obtained, but first note that the similarity values can be used to help 
determine whether groupings are natural or forced. If the similarity values for the levels are 
roughly evenly distributed throughout the range of possible values, then there is no 
principled argument that any particular number of clusters is better or “more natural” than 
another. Conversely, suppose that there is a unusually large gap between the similarity 
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so that all of the features have zero mean and unit variance— standardize the data. To 
obtain invariance to rotation, one might rotate the axes so that they coincide with the 
eigenvectors of the sample covariance matrix. This trans- formation to principal components 
can be preceded and/or followed by normalization for scale. 
However, we should not conclude that this kind of normalization is necessarily desirable. 
Consider, for example, the matter of translating and whitening—scaling the axes so that 
each feature has zero mean and unit variance. The rationale usually given for this 
normalization is that it prevents certain features from dominating distance calculations 
merely because they have large numerical values, much as we saw in networks trained with 
backpropagation. Subtracting the mean and dividing by the standard deviation is an 
appropriate normalization if this spread of values is due to normal random 
variation;however,it can be quite inappropriate if the spread is due to the presence of 
subclasses. 
Instead of scaling axes, we can change the metric in interesting ways. For instance, one 
broad class of distance metrics is of the form 
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where q ≥1 is a selectable parameter—the general Minkowski metric we considered in. 
Setting q =2 gives the familiar Euclidean metric while setting q =1 the Manhattan or city 
block metric—the sum of the absolute distances along each of the d  coordinate axes. Note 
that only q =2 is invariant to an arbitrary rotation or translation in feature space. Another 
alternative is to use some kind of metric based on the data itself, such as the Mahalanobis 
distance. 
More generally, one can abandon the use of distance altogether and introduce a nonmetric 
similarity function )',( xxs to compare two vectors x  and x . Convention-similarity ally, 
this is a symmetric functions whose value is large when x  and x  are somehowfunction 
“similar.” For example, when the angle between two vectors is a meaningful measure of 
their similarity, then the normalized inner product 
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may be an appropriate similarity function. This measure, which is the cosine of the angle 
between x  and x ,is invariant to rotation and dilation, though it is not invariant to 
translation and general linear transformations. 

 
8.2 Criterion Functions 
8.2.1 The Sum-of-Squared-Error Criterion 
The simplest and most widely used criterion function for clustering is the sum-of- squared-
error criterion. Let ni be the number of samples in iD  and let mi be the mean of those 
samples, 
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Then the sum-of-squared errors is defined by 
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8.2.2 Related Minimum Variance Criteria 
By some simple algebraic manipulation we can eliminate the mean vectors from the 
expression for eJ  and obtain the equivalent expression 
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Equation 51 leads us to interprets is  as the average squared distance between points in the  

i -th cluster, and emphasizes the fact that the sum-of-squared-error criterion uses Euclidean 
distance as the measure of similarity. It also suggests an obvious way of obtaining other 
criterion functions. For example, one can replaces is  by the average, the median, or perhaps 
the maximum distance between points in a cluster. More generally, one can introduce an 
appropriate similarity function s(x,x)and replaces is by functions such as 
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8.3 Hierarchical Clustering 
The most natural representation of hierarchical clustering is a corresponding tree, called a 
dendrogram, which shows how the samples are grouped. If it is possible to measure the 
similarity between clusters, then the dendrogram is usually drawn to scale to show the 
similarity between the clusters that are grouped. We shall see shortly how such similarity 
values can be obtained, but first note that the similarity values can be used to help 
determine whether groupings are natural or forced. If the similarity values for the levels are 
roughly evenly distributed throughout the range of possible values, then there is no 
principled argument that any particular number of clusters is better or “more natural” than 
another. Conversely, suppose that there is a unusually large gap between the similarity 
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values for the levels corresponding to c =3 and to c =4 clusters. In such a case, one can 
argue that c =3 is the most natural number of clusters. 

 
8.3.1 The Nearest-Neighbor Algorithm 
When maxd  is used to measure the distance between clusters the algorithm is sometimes 
called the nearest-neighbor cluster algorithm, or minimum algorithm Moreover, if it is 
terminated when the distance between nearest clusters exceeds an arbitrary threshold, it is 
called the single-linkage algorithm. Suppose that we think of the data points as being nodes 
of a graph, with edges forming a path between the nodes in the same subset iD . When dmin 
is used to measure the distance between subsets, the nearest neighbor nodes determine the 
nearest subsets. The merging of iD  and jD  corresponds to adding an edge between the 
nearest pair of nodes in iD  and jD . Since edges linking clusters always go between distinct 
clusters, the resulting graph never has any closed loops or circuits;in the terminology of 
graph theory, this procedure generates a tree. If it is allowed to continue until all of the 
subsets are linked, the result is a spanning tree—a tree with a path from any node to any 
other node. Moreover,it can be shown that the sum of the edge lengths of the resulting tree 
will not exceed the sum of the edge lengths for any other spanning tree for that set of 
samples. Thus, with the use of mind  as the distance measure, the agglomerative clustering 
procedure becomes an algorithm for generating a minimal spanning tree. 

 
8.3.2 The Farthest-Neighbor Algorithm 
When dmax(Eq.75)is used to measure the distance between subsets, the algorithm is 
sometimes called the farthest-neighbor clustering algorithm, or maximum algorithm. If it is 
terminated when the distance between nearest clusters exceeds an arbitrary threshold, it is 
called the complete-linkage algorithm. The farthest-neighbor algorithm discourages the 
growth of elongated clusters. Application of the procedure can be thought of as producing a 
graph in which edges connect all of the nodes in a cluster. In the terminology of graph 
theory, every cluster constitutes a complete subgraph. The distance between two clusters is 
determined by the most distant nodes in the two clusters. When the nearest clusters are 
merged, the graph is changed by adding edges between every pair of nodes in the two 
clusters. 
Unsupervised learning and clustering seek to extract information from unlabeled samples. If 
the underlying distribution comes from a mixture of component densities described by a set 
of unknown parameters  , then   can be estimated by Bayesian or maximum- likelihood 
methods. A more general approach is to define some measure of similarity between two 
clusters, as well as a global criterion such as a sum-squared- error or trace of a scatter matrix. 
Since there are only occasionally analytic methods for computing the clustering which 
optimizes the criterion, a number of greedy(locally step-wise optimal)iterative algorithms 
can be used, such as k-means and fuzzy k-means clustering. 
If we seek to reveal structure in the data at many levels—i.e., clusters with sub-clusters and 
sub-subcluster—then hierarchical methods are needed. Agglomerative or bottom-up 
methods start with each sample as a singleton cluster and iteratively merge clusters that are 
“most similar” according to some chosen similarity or distance measure.Conversely, 
divisive or top-down methods start with a single cluster  representing the full data set and 

iteratively splitting into smaller clusters, each time seeking the subclusters that are most 
dissimilar. The resulting hierarchical structure 
is revealed in a dendrogram. A large disparity in the similarity measure for successive 
cluster levels in a dendrogram usually indicates the “natural” number of clusters. 
Alternatively, the problem of cluster validity—knowing the proper number of clusters —can 
also be addressed by hypothesis testing. In that case the null hypothesis is that there are 
some number c  of clusters; we then determine if the reduction of the cluster criterion due to 
an additional cluster is statistically significant. 
Competitive learning is an on-line neural network clustering algorithm in which the cluster 
center most similar to an input pattern is modified to become more like that pattern. In 
order to guarantee that learning stops for an arbitrary data set, the learning rate must decay. 
Competitive learning can be modified to allow for the creation of new cluster centers, if no 
center is sufficiently similar to a particular input pattern, as in leader-follower clustering and 
Adaptive Resonance. While these methods have many advantages, such as computational 
ease and tracking gradual variations in the data, they rarely optimize an easily specified 
global criterion such as sum-of-squared error. 
Component analysis seeks to find directions or axes in feature space that provide an 
improved, lower-dimensional representation for the full data space. In(linear) principal 
component analysis, such directions are merely the largest eigenvectors of the covariance 
matrix of the full data; this optimizes a sum-squared-error criterion. Nonlinear principal 
components, for instance as learned in an internal layer an auto- encoder neural network, 
yields curved surfaces embedded in the full d -dimensional feature space, onto which an 
arbitrary pattern x is projected. The goal in independent component analysis—which uses 
gradient descent in an entropy criterion—is to determine the directions in feature space that 
are statistically most independent. Such directions may reveal the true sources(assumed 
independent)and can be used for segmentation and blind source separation. 
Two general methods for dimensionality reduction is self-organizing feature maps and 
multidimensional scaling. Self-organizaing feature maps can be highly nonlinear, and 
represents points close in the source space by points close in the lower-dimensional target 
space. In preserving neighborhoods in this way, such maps also called “topologically 
correct.” The source and target spaces can be of very general shapes, and the mapping will 
depend upon the the distribution of samples within the source space. Multidimensional 
scaling similarly learns a nonlinear mapping that, too, seeks to preserve neighborhoods, and 
is often used for data visualization. Because the basic method requires all the inter-point 
distances for minimizing a global criterion function, its space complexity limits the 
usefulness of multidimensional scaling to problems of moderate size. 

 
9. Conclusion 
 

One approach to this problem is to use the samples to estimate the unknown probabilities 
and probability densities, and to use the resulting estimates as if they were the true values. 
In typical supervised pattern classification problems, the estimation of the prior probabilities 
presents no serious difficulties. However, estimation of the class-conditional densities is 
quite another matter. The number of available samples always seems too small, and serious 
problems arise when the dimensionality of the feature vector x  is large. If we know the 
number of parameters in advance and our general knowledge about the problem permits us 
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values for the levels corresponding to c =3 and to c =4 clusters. In such a case, one can 
argue that c =3 is the most natural number of clusters. 

 
8.3.1 The Nearest-Neighbor Algorithm 
When maxd  is used to measure the distance between clusters the algorithm is sometimes 
called the nearest-neighbor cluster algorithm, or minimum algorithm Moreover, if it is 
terminated when the distance between nearest clusters exceeds an arbitrary threshold, it is 
called the single-linkage algorithm. Suppose that we think of the data points as being nodes 
of a graph, with edges forming a path between the nodes in the same subset iD . When dmin 
is used to measure the distance between subsets, the nearest neighbor nodes determine the 
nearest subsets. The merging of iD  and jD  corresponds to adding an edge between the 
nearest pair of nodes in iD  and jD . Since edges linking clusters always go between distinct 
clusters, the resulting graph never has any closed loops or circuits;in the terminology of 
graph theory, this procedure generates a tree. If it is allowed to continue until all of the 
subsets are linked, the result is a spanning tree—a tree with a path from any node to any 
other node. Moreover,it can be shown that the sum of the edge lengths of the resulting tree 
will not exceed the sum of the edge lengths for any other spanning tree for that set of 
samples. Thus, with the use of mind  as the distance measure, the agglomerative clustering 
procedure becomes an algorithm for generating a minimal spanning tree. 

 
8.3.2 The Farthest-Neighbor Algorithm 
When dmax(Eq.75)is used to measure the distance between subsets, the algorithm is 
sometimes called the farthest-neighbor clustering algorithm, or maximum algorithm. If it is 
terminated when the distance between nearest clusters exceeds an arbitrary threshold, it is 
called the complete-linkage algorithm. The farthest-neighbor algorithm discourages the 
growth of elongated clusters. Application of the procedure can be thought of as producing a 
graph in which edges connect all of the nodes in a cluster. In the terminology of graph 
theory, every cluster constitutes a complete subgraph. The distance between two clusters is 
determined by the most distant nodes in the two clusters. When the nearest clusters are 
merged, the graph is changed by adding edges between every pair of nodes in the two 
clusters. 
Unsupervised learning and clustering seek to extract information from unlabeled samples. If 
the underlying distribution comes from a mixture of component densities described by a set 
of unknown parameters  , then   can be estimated by Bayesian or maximum- likelihood 
methods. A more general approach is to define some measure of similarity between two 
clusters, as well as a global criterion such as a sum-squared- error or trace of a scatter matrix. 
Since there are only occasionally analytic methods for computing the clustering which 
optimizes the criterion, a number of greedy(locally step-wise optimal)iterative algorithms 
can be used, such as k-means and fuzzy k-means clustering. 
If we seek to reveal structure in the data at many levels—i.e., clusters with sub-clusters and 
sub-subcluster—then hierarchical methods are needed. Agglomerative or bottom-up 
methods start with each sample as a singleton cluster and iteratively merge clusters that are 
“most similar” according to some chosen similarity or distance measure.Conversely, 
divisive or top-down methods start with a single cluster  representing the full data set and 

iteratively splitting into smaller clusters, each time seeking the subclusters that are most 
dissimilar. The resulting hierarchical structure 
is revealed in a dendrogram. A large disparity in the similarity measure for successive 
cluster levels in a dendrogram usually indicates the “natural” number of clusters. 
Alternatively, the problem of cluster validity—knowing the proper number of clusters —can 
also be addressed by hypothesis testing. In that case the null hypothesis is that there are 
some number c  of clusters; we then determine if the reduction of the cluster criterion due to 
an additional cluster is statistically significant. 
Competitive learning is an on-line neural network clustering algorithm in which the cluster 
center most similar to an input pattern is modified to become more like that pattern. In 
order to guarantee that learning stops for an arbitrary data set, the learning rate must decay. 
Competitive learning can be modified to allow for the creation of new cluster centers, if no 
center is sufficiently similar to a particular input pattern, as in leader-follower clustering and 
Adaptive Resonance. While these methods have many advantages, such as computational 
ease and tracking gradual variations in the data, they rarely optimize an easily specified 
global criterion such as sum-of-squared error. 
Component analysis seeks to find directions or axes in feature space that provide an 
improved, lower-dimensional representation for the full data space. In(linear) principal 
component analysis, such directions are merely the largest eigenvectors of the covariance 
matrix of the full data; this optimizes a sum-squared-error criterion. Nonlinear principal 
components, for instance as learned in an internal layer an auto- encoder neural network, 
yields curved surfaces embedded in the full d -dimensional feature space, onto which an 
arbitrary pattern x is projected. The goal in independent component analysis—which uses 
gradient descent in an entropy criterion—is to determine the directions in feature space that 
are statistically most independent. Such directions may reveal the true sources(assumed 
independent)and can be used for segmentation and blind source separation. 
Two general methods for dimensionality reduction is self-organizing feature maps and 
multidimensional scaling. Self-organizaing feature maps can be highly nonlinear, and 
represents points close in the source space by points close in the lower-dimensional target 
space. In preserving neighborhoods in this way, such maps also called “topologically 
correct.” The source and target spaces can be of very general shapes, and the mapping will 
depend upon the the distribution of samples within the source space. Multidimensional 
scaling similarly learns a nonlinear mapping that, too, seeks to preserve neighborhoods, and 
is often used for data visualization. Because the basic method requires all the inter-point 
distances for minimizing a global criterion function, its space complexity limits the 
usefulness of multidimensional scaling to problems of moderate size. 

 
9. Conclusion 
 

One approach to this problem is to use the samples to estimate the unknown probabilities 
and probability densities, and to use the resulting estimates as if they were the true values. 
In typical supervised pattern classification problems, the estimation of the prior probabilities 
presents no serious difficulties. However, estimation of the class-conditional densities is 
quite another matter. The number of available samples always seems too small, and serious 
problems arise when the dimensionality of the feature vector x  is large. If we know the 
number of parameters in advance and our general knowledge about the problem permits us 
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to parameterize the conditional densities, then the severity of these problems can be reduced 
significantly. Suppose, for example, that we can reasonably assume that )|( ixp   is a normal 
density with mean i  and covariance matrix i , although we do not know the exact values 
of these quantities. This knowledge simplifies the problem from one of estimating an 
unknown function )|( ixp   to one of estimating the parameters i  and i . 
In general there are two approaches to develop classifiers: a parametric approach and a 
nonparametric approach. in a parametric approach, a priori knowledge of data distributions 
is assumed, otherwise, a nonparametric approach will be employed. Neural networks, fuzzy 
systems, and support vector machines are typical nonparametric classifiers. 
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1. Introduction 
 

Support vector machine (SVM) originally introduced by Vapnik. V. N. has been successfully 
applied because of its good generalization. It is a kind of learning mechanism which is based 
on the statistical learning theory and it is a new technology based on the kernel which is 
used to solve the problems of learning from the samples. Support vector machine was 
presented in 1990s, and it has been researched deeply and extensively applied in some 
practical application since then, for example text cataloguing, handwriting recognition, 
image classification etc. Support vector machine can provide optimal learning capacity, and 
has been established as a standard tool in machine learning and data mining. But learning 
from the samples is an ill–posed problem which can be solved by transforming into a posed 
problem by regularization. The RK and its corresponding reproducing kernel Hilbert space 
(RKHS) play the important roles in the theory of function approach and regularization. 
However, different functions approach problems need different approach functional sets. 
Different kernel’s SVM can solve different actual problems, so it is very significant to 
construct the RK function which reflects the characteristics of this kind of approach function. 
In kernel-based method, one map which put the input data into a higher dimensional space. 
The kernel plays a crucial role during the process of solving the convex optimization 
problem of SVM. How to choose a kernel function with good reproducing properties is a 
key issue of data representation, and it is closely related to choose a specific RKHS. It is a 
valuable issue whether a better performance could be obtained if we adopt the RK theory 
method. Actually it has caused great interest of our researchers. In order to take the 
advantage of the RK, we propose a LS-SVM based on RK and develop a framework for 
regression estimation in this paper. The Simulation results are presented to illustrate the 
feasibility of the proposed method and this model can give a better experiment results, 
comparing with Gauss kernel on regression problem. 

 
2. Small Sample Statistical Learning Theory 
 

In order to avoid the assumption that the distribution of sample points and sample purpose 
of the request created a new principle of statistical inference ---- structured risk 
minimization principle. 

5
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We discussed the two classification problems, that is 
1 1 2 2( , ),( , ), ,( , ) n

l lx y x y x y R Y   

where    1, 1 ; 1,2, ,iY x i l      is the independent and identical distribution data based 
on distribution density function ( , )p x y . 
Suppose f to be classifier, which is defined as the expectations of risk 

( ) ( ) ( , )R f f x y p x y dxdy  .                        (1) 
Experience of risk is defined as 

1

1( ) ( )
l

emp i i
i

R f f x y
l 

  .                         (2) 

Since the distribution density function ( , )p x y  is unknown, it is virtually impossible to 
calculate the risk expectations ( )R f . 
If l  , we have ( ) ( )empR f R f . Accordingly, the process from control theory modeling 
method to the neural network learning algorithm always constructs model with minimum 
experience risk. It is called as Empirical Risk Minimization principle. 
If ( )R f  and ( )empR f  converge to the same limitation inf ( )R f  in probability, that is,  

( ) inf ( )p
nR f R f ,     ( ) inf ( )p

emp nR f R f . 
Then Empirical Risk Minimization principle (method) has the consistency. 
Unfortunately, as early as in 1971 Vapnik had proved that the minimum of experience of 
risk may not converge to the minimum of expectations of risk, that is, the experience of risk 
minimization principle is not established. 
Vapnik and Chervonenkis proposed structural risk minimization principle, laid the 
foundation for small sample statistical theory. They studied the relationship between 
experience of risk and expectations of risk in-depth, and obtained the following inequality, 
that is 

2(ln 1) ln
4( ) ( )emp

lh
hR f R f

l


 

  ,                    (3) 

which l ----- samples number;  ----- Parameters  0 1  ; h ----- Dimension of 
function f , for short VC-dimension. 
The importance of formula (3): the right side of inequality has nothing to do with the 
specific distribution of the sample, that is, Vapnik's statistical learning theory do not need 
the assumption about the distribution of samples, it overcomes the problem of the 
high-dimensional distribution to the demand of samples number as exponential growth 
with the dimension growth. This is essence distinction with the classic statistical theory and 
the reasons for we call the Vapnik statistical methods for small samples of statistical theory. 
From the formula (3), if /l h  is large, the expectations of risk (real risk) is decided mainly 
by the experienced of risk, and this is the reason of the experience of risk minimization 
principle can often give good results for large sample set. However, if /l h  is small, the 
small value of the experience of risk ( )empR f  has not necessarily a small value of the actual 
risk. In this case, in order to minimize the actual risk, we must consider two items of the 
right in formula (3): the experience of risk ( )empR f  and confidence range (called the VC 

dimension confidence). VC dimension h  play an important role, in fact, confidence range 
is an increasing function about h . When fixed the number l  of points in the sample, the 
more complex the classifier, that is, the greater the VC dimension h , the greater the range 
of confidence, leading to the difference between the actual risks and experience gets greater. 
Therefore, in order to ensure the actual risk to be the smallest, to make sure experience risk 
minimization, but also to make the VC classifier peacekeeping function as small as possible, 
this is the principle of structural risk minimization. 
With Structural risk minimization principle, the design of a classifier has two-step process: 
(1) Choice of model classifier to a smaller VC dimension, that is, small confidence range. 
(2) Estimate the model parameters to minimize the risk experience 

 
3. Classification of support vector machine based on quadratic program 
 

3.1 Solving quadratic programming with inequality constraints 
On the target of finding a classifying space H  which can exactly separate the two-class 
sample, and maximize the spacing of classification. The classifying space is called optimal 
classifying hyper plane. 
In mathematics, the equation of classifying space is  

, 0w x b  , 

where ,w x  is the inner product of the two vector, w  is the weight number, b  is a 
constant. 
So we can conclude that the problem which maximizes the spacing of classification between 
the two-class samples corresponds with an optimization problem as followed: 
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w w w w   .                    (4) 

The constraint condition is  
, 1 1,2, ,i iy w x b i l      .                     (5) 

The (4) and (5) are current methods which describes the date sample is separated by the rule 
of the support vector machine. Inherently it's a quadratic program problem solved by 
inequality constraint. 
We adopt the Lagrange optimization method to solve the quadratic optimization problem. 
Therefore, we have to find the saddle point of a Lagrange function 
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where 0i   is the Lagrange multiplier. 
By extremal condition, we can obtain 
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Then we have already changed the symbol from ( , , )L w b   to ( )Q   for reflecting the final 
transform. 
The expression (7) is called Lagrange dual objective function. Under the constraint condition  
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We discussed the two classification problems, that is 
1 1 2 2( , ),( , ), ,( , ) n

l lx y x y x y R Y   

where    1, 1 ; 1,2, ,iY x i l      is the independent and identical distribution data based 
on distribution density function ( , )p x y . 
Suppose f to be classifier, which is defined as the expectations of risk 

( ) ( ) ( , )R f f x y p x y dxdy  .                        (1) 
Experience of risk is defined as 

1

1( ) ( )
l

emp i i
i

R f f x y
l 

  .                         (2) 

Since the distribution density function ( , )p x y  is unknown, it is virtually impossible to 
calculate the risk expectations ( )R f . 
If l  , we have ( ) ( )empR f R f . Accordingly, the process from control theory modeling 
method to the neural network learning algorithm always constructs model with minimum 
experience risk. It is called as Empirical Risk Minimization principle. 
If ( )R f  and ( )empR f  converge to the same limitation inf ( )R f  in probability, that is,  
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emp nR f R f . 
Then Empirical Risk Minimization principle (method) has the consistency. 
Unfortunately, as early as in 1971 Vapnik had proved that the minimum of experience of 
risk may not converge to the minimum of expectations of risk, that is, the experience of risk 
minimization principle is not established. 
Vapnik and Chervonenkis proposed structural risk minimization principle, laid the 
foundation for small sample statistical theory. They studied the relationship between 
experience of risk and expectations of risk in-depth, and obtained the following inequality, 
that is 
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which l ----- samples number;  ----- Parameters  0 1  ; h ----- Dimension of 
function f , for short VC-dimension. 
The importance of formula (3): the right side of inequality has nothing to do with the 
specific distribution of the sample, that is, Vapnik's statistical learning theory do not need 
the assumption about the distribution of samples, it overcomes the problem of the 
high-dimensional distribution to the demand of samples number as exponential growth 
with the dimension growth. This is essence distinction with the classic statistical theory and 
the reasons for we call the Vapnik statistical methods for small samples of statistical theory. 
From the formula (3), if /l h  is large, the expectations of risk (real risk) is decided mainly 
by the experienced of risk, and this is the reason of the experience of risk minimization 
principle can often give good results for large sample set. However, if /l h  is small, the 
small value of the experience of risk ( )empR f  has not necessarily a small value of the actual 
risk. In this case, in order to minimize the actual risk, we must consider two items of the 
right in formula (3): the experience of risk ( )empR f  and confidence range (called the VC 

dimension confidence). VC dimension h  play an important role, in fact, confidence range 
is an increasing function about h . When fixed the number l  of points in the sample, the 
more complex the classifier, that is, the greater the VC dimension h , the greater the range 
of confidence, leading to the difference between the actual risks and experience gets greater. 
Therefore, in order to ensure the actual risk to be the smallest, to make sure experience risk 
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this is the principle of structural risk minimization. 
With Structural risk minimization principle, the design of a classifier has two-step process: 
(1) Choice of model classifier to a smaller VC dimension, that is, small confidence range. 
(2) Estimate the model parameters to minimize the risk experience 

 
3. Classification of support vector machine based on quadratic program 
 

3.1 Solving quadratic programming with inequality constraints 
On the target of finding a classifying space H  which can exactly separate the two-class 
sample, and maximize the spacing of classification. The classifying space is called optimal 
classifying hyper plane. 
In mathematics, the equation of classifying space is  

, 0w x b  , 

where ,w x  is the inner product of the two vector, w  is the weight number, b  is a 
constant. 
So we can conclude that the problem which maximizes the spacing of classification between 
the two-class samples corresponds with an optimization problem as followed: 
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The constraint condition is  
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The (4) and (5) are current methods which describes the date sample is separated by the rule 
of the support vector machine. Inherently it's a quadratic program problem solved by 
inequality constraint. 
We adopt the Lagrange optimization method to solve the quadratic optimization problem. 
Therefore, we have to find the saddle point of a Lagrange function 
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where 0i   is the Lagrange multiplier. 
By extremal condition, we can obtain 
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Then we have already changed the symbol from ( , , )L w b   to ( )Q   for reflecting the final 
transform. 
The expression (7) is called Lagrange dual objective function. Under the constraint condition  
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0, 1,2, ,i i l    ,                         (9) 
we find that i  which can maximize the function ( )Q  . Then, the sample is the support 
vector when i  are not zero. 

 
3.2 Kernel method and its algorithm implementation 
When the samples are not separated by liner classification, the way of the solution is using a 
liner transforms  x  to put the samples from input data space to higher dimensional 
character space, and then we separate the samples by liner classification in higher 
dimensional character space, and finally we use the  1 x  to put the samples from higher 
dimensional character space to input data, which is a nonlinear classification in input data. 
The basic thought of the kernel method is that, for any kernel function  , iK x x  which 

satisfies with the condition of Mercer, there is a character space       1 2, , , ,lx x x     

and in this space the kernel function implies inner product. So the inner product has been 
replaced by kernel in input space.  
The advantage of the kernel method is that, the kernel function of input space is equivalent 
to the inner product in character space, so we only choose the kernel function  , iK x x  

without finding out the nonlinear transforms  x . 
Considering the Lagrange function 
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, 0, 1, ,i i i l     . 
Similar to the previous section, we can get the dual form of the optimization problem 
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The constraint condition is  
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0 , 1, ,i C i l    .                        (13) 
Totally, the solution of the optimization problem is characterized by the majority of i  
being zero, and the support vector is that the samples correspond with the i  which are 
not zero. 
We can obtain the calculation formula of b  from KKT as followed 
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So we can find the value of b  from anyone of the support vector. In order to stabilization, 
we can also find the value of b  from all support vectors, and then get the average of the 
value. 
Finally, we obtain the discriminate function as followed 
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3.3 One-class classification problem 
Let a sample’s set be 

 , 1, , , d
i ix i l x R  . 

We want to find the smallest sphere with a  as its center and R  as the radius and can 
contain all samples. If we directly optimize the samples, the optimization area is a hyper 
sphere. Allowing some data errors existed, we can equip with slack variable i  to control, 

and find a kernel function  ,K x y  which satisfies that      , ,K x y x y  , and the 

optimization problem is 
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The constraint condition is  
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Type (16) will be changed into its dual form 
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We can get   by solving (19). Usually, the majority of   will be zero, the samples 
corresponded with 0i   are still so-called the support vector. 
According to the KKT condition, the samples corresponded with 0 i C   are satisfied  
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 . Thus, according to the (22), we can find the value of R  by any support 

vector. For a new sample z , let 
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If   2f z R , z  is a normal point; otherwise, z  is an abnormal point. 

 
3.4 Multi-class support vector machine 
1. One-to-many method  
The idea is to take samples from a certain class as one class and consider the remaining 
samples as another class, and then there is a two-class classification. Afterward we repeat 
the above step in the remaining samples. The disadvantage of this method is that the 
number of training sample is large and the training is difficult.  
2. One-to-one method 
In multi-class classification, we only consider two-class samples every time, that is, we 

design a model of SVM for every two-class samples. Therefore, we need to design ( 1)
2

k k   

models of SVM. The calculation is very complicated. 
3. SVM decision tree method 
It usually combines with the binary decision tree to constitute multi-class recognizer, whose 
disadvantage is that if the classification is wrong at a certain node, the mistake will keep 
down, and the classification makes nonsense at the node after that one. 
4. Determine the multi-class objective function method 
Since the number of the variables is very large, the method is only used in small problem. 
5. DAGSVM 
John C.Platt brings forward this method, combining DAG with SVM to realize the 
multi-class classification. 
6. ECC-SVM methods 
Multi-class classification problem can be changed into many two-class classification 
problems by binary encoding for classification. This method has certain correction 
capability. 
7. The multi-class classification algorithm based on the one-class classification 
The method is that we first find a center of hyper sphere in every class sample in higher 
dimensional character space, and then calculate the distance between every center and test 
the samples, finally, judge the class based on the minimum distance a point on it. 

 
4. Classification of support vector machine based on linear programming 
 

4.1 Mathematical background  
Considering two hyper plane of equal rank on dR , 1 1: , 0H x b   and 2 2: , 0H x b   . 
Based on pL  two the hyper plane distance of norm is: 
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Choose a 2y H  arbitrarily, then two hyper plane's can be write be 
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
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Moves two parallel hyper plane to enable 2H  to adopt the zero point, can be obtain the 
same distance hyper plane: 

 1 1 2: , , 0H x b b   , 2 : , 0H x  . 
If chooses y spot is the zero point, then the distance between two hyper plane is  
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If pL  is the qL  conjugate norm, that is p and q satisfy the equality 
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By the Holder inequality may result in 
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Regarding 1x H , we have 1 2, x b b   . Therefore 
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So, the distance between two hyper plane is 
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4.2 Classification algorithm of linear programming 
1 norm formula of 1L  

The two hyper-plane 1 1: , 0H x b    and 2 2: , 0H x b   , through the definition of the 
norm of the distance between them 
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Where, 


 expressed as a norm of L¥ , it is the dual norm of 1L , defined as 
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Supposes : , 1H x b   , : , 1H x b    , established through the two types of 
support Vector distance between the hyper-plane as follow 
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The two hyper-plane 1 1: , 0H x b    and 2 2: , 0H x b   , through the definition of the 
norm of the distance between them 
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b b
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Where, 


 expressed as a norm of L¥ , it is the dual norm of 1L , defined as 

max j jL w¥ = .                             (32) 

Supposes : , 1H x b   , : , 1H x b    , established through the two types of 
support Vector distance between the hyper-plane as follow 
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Therefore the optimized question's equation is 

,
minmax j jbw

w .                             (34) 

The restraint is 
( ), 1, 1, ,i iy x b i lw + ³ =  .                       (35) 

Therefore obtains the following linear programming 
mina .                               (36) 

The restraint is 
( ), 1, 1, ,i iy x b i lw + ³ =  ,                      (37) 

, 1, ,ja j dw³ =  ,                          (38) 
, 1, ,ja j dw³- =  ,                         (39) 

, , da b R RwÎ Î .                            (40) 
This is a linear optimization question, must be much simpler than the quadratic 
optimization. 
2 norm formula of L¥  
If defines L¥  between two hyper-planes the distances, then we may obtain other one form 
linear optimization equation. This time, between two hyper-planes distances is 

  1 2
1 2
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,
b b

d H H
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
 .                          (41) 

Regarding the linear separable situation, two support between two hyper-planes the 
distances is 
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Maximized type (42) is equivalent to 

,
min j

b jw
wå .                               (43) 

The restraint is 
( ), 1, 1, ,i iy x b i lw + ³ =  .                       (44) 

Therefore the optimized question is 

1
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d

j
j
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=
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Bound for 
( ), 1, 1, ,i iy x b i lw + ³ =  ,                      (46) 

, 1, ,j ja j dw³ =  ,                         (47) 
, 1, ,j ja j dw³- =  .                         (48) 

 
4.3 One-class classification algorithm in the case of linear programming 
The optimized question is 
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i
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C  

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Restrain for 
 , , 0, 1, ,i i ix i l         .                 (50) 

Introduces Lagrange the function 
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in the formula 
~

0, 0, 1, ,i i i l     . 
The function L’s extreme value should satisfy the condition 
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0, 1, ,i iC i l      .                          (55) 
With (53)~(55) replace in Lagrange function (51). And using kernel function to replace inner 
product arithmetic in higher dimensional space, finally we may result in the optimized 
question the dual form is 
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After solving the value of   we may get the decision function 
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f x k x x

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While taking the Gauss kernel function , we may discover that the optimized equation (56) 
and a classification class method's of the other form ----- type (19) is equal. 
We may obtain its equal linear optimization question by the reference 
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Using kernel expansion  
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  to replace the optimized question type (60) the 
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Therefore the optimized question's equation is 
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After solving the value of   we may get the decision function 
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inequality constraint item , ( )ix  , so we can obtain the following linear programming 
form:  

1
min

l

i
i

C 


 
  
 

 .                          (63) 

Restrain for 

 
1

, , 1, ,
l

i i i
i

k x x i l  


    ,                     (64) 

1
1

l

i
i




 ,                               (65) 

, 0, 1, ,i i i l     .                           (66) 
Solving this linear programming may obtain the of value   and   , therefore we can 
obtain a decision function: 

 
1

( ) ,
l

i i
i

f x k x x


 .                           (67) 

According to the significance of optimization problems, regarding the majority of training 
samples will meet ( )f x  , the significance of parameter C  satisfies the condition 
( )f x   to control the sample quantity , the larger parameter C  will cause all samples to 

satisfy the condition ,and the geometry significance of parameter  C  will give in the 5th 
chapter. Hyper plane of the decision-making to be as follows: 

 
1

,
l

i i
i

k x x 


 .                            (68) 

After Hyper plane of the decision-making reflected back to the original space, the training 
samples will be contained in the regional compact. Regarding arbitrary sample x  in the 
region, satisfies ( )f x  , and for region outside arbitrary sample y  to satisfy ( )f x   
In practical application, the value of parameter 2  in kernel function is smaller , which 
obtains the region to be tighter in the original space to contain the training sample , this 
explained that the parameter 2  will decide classified precisely . 

 
4.4 Multi-class Classification algorithm in the case of linear programming  
The following linear programming will be under the classification of a class which is 
extended to many types of classification. Using the methods implement a classification class 
operation to each kind of samples, then obtains a decision function to each kind. Then input 
the wait for testing samples in each decision function, according to the decision function to 
determine the maximum-point belongs to the category. The concrete algorithm is as follows 
stated. 
Supposes the training sample is: 

      1 1, , , , , 1,2, ,n
l lx y x y R Y Y M    , 

where, n  is the dimension of input samples ; M  is a category number . Sample is divided 
into M -type, and various types of classifications are written separately: 

          1 1, , , , , 1, ,
s s

s s s s
l lx y x y s M   

where      , , 1,2, ,s s
i i sx y s l   represents the s -th type of training samples 

1 2 Ml l l l    . A kind of classification thought according to 2.3 section, made the 
following linear programming: 

1 1

min
slM
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s i
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s s s
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      ,              (70) 

 

1
1, 1, ,

sl
s

j
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s M


   ,                         (71) 

  , 0, 1, ,s
i si ss l     .                         (72) 

Solving this linear programming, may obtain M  decision functions 
    

1
( ) , , 1, ,

sl
s s

s j j
j

f x a k x x s M


   .                    (73) 

Assigns treats recognition sample z , calculated ( ), 1, ,i sf z i M    . Compared with the 
size, find the largest k , then z  belongs to the k -th type. At the same time, the definition 
of the classification results can trust is as follows: 

k

1
B

k

k otherwise

 




 


.                          (74) 

When the difference of the number among samples of various types is large, we can 
introduce the different   value in optimized type (69). And using quadratic programming 
the similar processing methods, here no longer relates in details. 
Another alternative way is to directly compare the new sample size in all decision function, 
and then the basis maximum value to determine where a new category of sample was taken. 
As a result of the decomposition algorithm to the optimization process is an independent, it 
can also be carried out in parallel computing. 

 
5. The beat-wave signal regression model based on least squares 
reproducing kernel support vector machine 
 

5.1 Support Vector Machine 
For the given sample’s set  

1 1{(  ,  ) ,  ... ,  (  ,  )} l lx y x y  
 ,  d

i ix R y R  , l  is the samples number, d  is the number of input dimension. In order to 
precisely approach the function ( )f x  which is about this data set, For regression analysis, 
SVM use the regression function as following 

1
( ) (  ,  )

l

i i
i

f x w k x x q


  ,                         (75) 
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explained that the parameter 2  will decide classified precisely . 

 
4.4 Multi-class Classification algorithm in the case of linear programming  
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When the difference of the number among samples of various types is large, we can 
introduce the different   value in optimized type (69). And using quadratic programming 
the similar processing methods, here no longer relates in details. 
Another alternative way is to directly compare the new sample size in all decision function, 
and then the basis maximum value to determine where a new category of sample was taken. 
As a result of the decomposition algorithm to the optimization process is an independent, it 
can also be carried out in parallel computing. 
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5.1 Support Vector Machine 
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iw  is the weight vector, and q  is the threshold, (  ,  )ik x x  is the kernel function. 
Training a SVM can be regarded as minimizing the value of ( ,  )J w q  

2
2

1 1

1min ( ,  )   (  ,   )
2

l l

k i i k
k i

J w q w y w k x x q
 

     
 

  .           (76) 

The kernel function (  ,  )ik x x  must satisfy with the condition of Mercer. When we define 
the kernel function (  ,  )ik x x , we also define the mapping which is from input datas to 
character space. The general used kernel function of SVM is Gauss function, defined by 

2 2( ,  ) exp( /2 ) k x x x x     .                    (77) 
For this equation,   is a parameter which can be adjusted by users. 

 
5.2 Support Vector’s Kernel Function 
1. The Conditions of Support Vector’s Kernel Function 
In fact, if a function satisfies the condition of Mercer, it is the allowable support vector’s 
kernel function. 
Lemma 2.1 The symmetry function ( ,  )k x x  is the kernel function of SVM if and only if: for 
all function 0g   which satisfies the condition of 2 ( )

dR
g d    , we need to satisfy the 

condition as following 
 ( , ) ( ) ( ) 0

d dR R
k x x g x g x dxdx


    .                    (78) 

This Lemma proposes a simple method to build the kernel function. 
For the horizontal floating function, we can give the condition of horizontal floating kernel 
function. 
Lemma 2.2 The horizontal floating function ( ,  ) ( )k x x k x x    is a allowable support 
vector’s kernel function if and only if the Fourier transform of ( )k x  need to satisfy the 
condition as following 

2ˆ( ) (2 ) exp( ) ( ) 0
d

d

R
k jwx k x dx 


   .                 (79) 

2. Reproducing Kernel Support Vector Machine on the Sobolev Hilbert space 1( : , )H R a b  
Let ( )F E  be the linear space comprising all complex-valued functions on an abstract set 
E . Let H  be a Hilbert (possibly finite-dimensional) space equipped with inner product 
   ,   

H
  . Let :h E H  be a Hilbert space H -function on E . Then, we shall consider 

the linear mapping L  from H  into ( )F E  defined by  
( ) ( )( ) ( ,  ( ))Hf q Lg p g h p  .                       (80) 

The fundamental problems in the linear mapping (80) will be firstly the characterization of 
the images ( )f p  and secondly the relationship between g  and ( )f p . 
The key which solves these fundamental problems is to form the function ( , )K p q  on 
E E  defined by 

( , ) ( ( ), ( ))HK p q g q g p .                       (81) 
We let ( )R L  denote the range of L  for H  and we introduce the inner product in ( )R L  
induced from the norm  
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Then, we obtain 
Lemma 2.3 For the function ( , )K p q  defined by (81), the space ( )( ),( , )R LR L     is a Hilbert 

(possibly finite dimensional) space satisfying the properties that 
(i) for any fixed q E , ( , )K p q  belongs to ( )R L  as a function in p ; 
(ii) for any ( )f R L  and for any q E , 
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Further, the function ( , )K p q  satisfying (i) and (ii) is uniquely determined by ( )R L . 
Furthermore, the mapping L  is an isometry from H  onto ( )R L  if and only if 
{ ( ); }h p p E  is complete in H . 
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is the RK of 1( : , )H R a b . 
On the Hilbert space, we construct this horizontal floating kernel function: 
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and the Fourier transform of this function is positive. 
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is a allowable support vector kernel function. 
Proof. By the Lemma 2.2, we only need to prove 
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iw  is the weight vector, and q  is the threshold, (  ,  )ik x x  is the kernel function. 
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For regression analysis, the output function is defined as 
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i
jx  is the value of the i -th training sample’s j -th attribute. 

 
5.3 Least Squares RK Support Vector Machine 
Least squares support vector machine is a new kind of SVM. It derives from transforming 
the condition of inequation into the condition of equation. Firstly, we give the linear 
regression algorithm as follows. 
For the given samples set  

1 1{(  ,  ) ,  ,  (  ,  )} l lx y x y  
 ,  d

i ix R y R  , l  is the sample’s number, d  is the number of input dimension. The linear 
regression function is defined as 

( )  Tf x w x q  .                           (89) 
Importing the structure risk function, we can transform regression problem into protruding 
quadratic programming 
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We define the Lagrange function as 
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From equations （93）, we can get the following linear equation 
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where 1[ , , ]lx x x  , 1[ , , ]ly y y  , [1, ,1]   , 1[ , , ]l    , 1[ , , ]l    . 
The equation result is 
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For non-linear problem, the non-linear regression function is defined as 
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The above equation result can be changed into 
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
  ， the function ( , )k    is given by (87). Based on the RK kernel 

function, we get a new learning method which is called least squares RK support vector 
machine (LS-RKSVM). Since using least squares method, the computation speed of this 
algorithm is more rapid than the other SVM. 

 
5.4 Simulation results and analysis 
We use LS-RKSVM to regress the Beat-wave signal 

1 2( ) sin( ) sin( )a t A t t    
where ( )a t  is the Beat-wave signal, A  is the Signal amplitude, 1  is the higher 
frequency of Beat-wave frequencies, that is the resonant frequency of resonant Beat-wave, 

2  is the frequency of Beat-wave, the relationship between 1  and 2  is that 2 1 / 2n  , 
where n  is the cycle number of sine wave which is included in a beat-wave with a 1  
frequency. 
We assume 21.1,  0.5,  5,  2A n t s    , and 150 sampling points. We can get the result of 
this experiment which can be described as figure 1, figure 2 and table 1. Figure 1 is the 
regression result of LS-SVM which uses the Gauss kernel function. Figure 2 is the regression 
result of LS-RKSVM which uses the RK kernel function.  
For regression experiments, we use the approaching error as following 
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The Simulation results shows that the regression ability of RK kernel function is much better 
than Gauss kernel function. This reveals RK kernel function has rather strong regression 
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The Simulation results shows that the regression ability of RK kernel function is much better 
than Gauss kernel function. This reveals RK kernel function has rather strong regression 
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ability and it can be used for pattern recognition. We can find that the LS-SVM is a very 
promising method based on RK kernel. The model has strong regression ability. 
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Fig. 1. The regression curve based on Gauss kernel (“.” is true value, “+” is predictive value) 
 

 
Fig. 2. The regression curve based on RK kernel (“.” is true value, “*” is predictive value) 
 
The SVM is a new machine study method which is proposed by Vapnik based on statistical 
learning theory. The SVM focus on studying statistical learning rules under small sample. 

kernel function kernel parameter error 
RBF kernel:γ=150  =0.01 0.0164
RK kernel: γ=150 a=0.1, b=1 0.0110 

Through structural risk minimization principle to enhance extensive ability, the SVM 
preferably solves many practical problems, such as small sample, non-linear, high 
dimension number and local minimum points. The LS-SVM is an improved algorithm 
which base on SVM. This paper proposes a new kernel function of SVM which is the RK 
kernel function. We can use this kind of kernel function to map the low dimension input 
space to the high dimension space. The RK kernel function enhances the generalization 
ability of the SVM. At the same time, adopting LS-SVM, we get a new regression analysis 
method which is called least squares RK support vector machine. Experiment shows that the 
RK kernel function is better than Gauss kernel function in regression analysis. The RK and 
LS-SVM are combined effectively. Thereby we can find that the result of regression is more 
precisely. 

 
6. Prospect 
 

Further study should be started in the following areas: 
1. The kernel method provides an effective method which can change the nonlinear problem 
into a linear problem, that is, the kernel function plays an important role in the support 
vector machine. Therefore, for practical problems, rational choice of the kernel function and 
the parameter in it is a problem which should be research. 
2. For the massive data of practical problems, a serious problem need to be solved is to 
propose an efficient algorithm. 
3. It is a valuable research direction that fusion of the Boosting and the Ensemble methods 
are proposed to be a better algorithm of support vector machine. 
4. It is significant to put the support vector machine, planning network, Gauss process and 
neural network into same frame. 
5. It is a significant research subject that combines the idea of support vector machine with 
the Bayes Decision and consummates the maximum margin algorithm. 
6. The research on support vector machine still needs to be done extensively. 
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1. Introduction

Machine learning is widely used for object recognition in images (Viola & Jones, 2001). Indeed,
the goal is to recognize any object of the same class whatever the background, the illumina-
tion conditions, ... . The key-point of such a method is the ability to create a generic model
able to describe the huge variability of an object class. A large training set is then used so as
to cover all the variations taken by the object class. For each example, a simple description
provides a huge feature vector from which only a subset is relevant according to the object to
be recognised.
Kernel based machines like Support Vector Machine (SVM) (Vapnik, 1998) have shown great
performances for object recognition in images (Papageorgiou & Poggio, 2000). But high di-
mensional problem can be prohibitive for it: it implies expensive time, presence of irrelevant
features can disturb the classifier and overfitting often occurs.
Various approaches were proposed in order to decrease this number of variables (Guyon &
Elisseeff, 2003). They are of two types: the filters and the wrappers. The filters methods use only
the training set. They process the entire data before the learning step and keep only relevant
characteristics. Most widespread is the Relief algorithm, introduced by Kira and Rendell (Kira
& Rendell, 1992) and improved by Konenko (Kononenko, 1994), which computes a criterion
of relevance for each characteristic of the training set. Another approach presented by Hall in
(Hall, 2000) uses a correlation score to reduce the training set. An extension of this method
was developed in (Yu & Liu, 2003) for great dimension sets.
The wrappers methods carried out the variable choice at the same time as the training process
is done. Moreover, they use the process itself to select relevant characteristics (Kohavi & John,
1997). Solutions were brought for SVMs. Weston in (Weston et al., 2000) explores parame-
ter space by a stepped gradient descent and fix an exit threshold on the classification error.
Rakotomamonjy proposes in (Rakotomamonjy, 2003) a selection criterion based on the vari-
able influence on the decision rule of a SVM classifier. Generally, these methods, which take
account of the training set and the classifier in the same time, give good results but induce
expensive computing times.
For an out-line learning, the computing time is not the main problem. However, studies like
(Campedel et al., 2005) showed the efficiency of variable selection to improve the classifier
performances: the presence of useless data can disturb the classifier and memory is misused.

6
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With the aim of time-saving, the ideal is to use a variable selection algorithm which can be
processed independently of the learning process. But not to take account of the classifier is
the major disadvantage of the filtering methods: the drawback is to select attributes which are
not finally useful for this one. To guarantee the relevance of the characteristics preserved for
the classifier, the best tool is this classifier used itself.
AdaBoost algorithms can also be used for feature selection. In (Viola & Jones, 2001) an
AdaBoost cascade is used with Haar wavelets based descriptor. At each stage of the classifier,
a Haar resolution is chosen and images are divided into several sub-windows. The classifier
rejects the non-informative ones. At the follow step, the Haar resolution is increased only for
sub-windows which were selected at the previous iteration. This stage of the classifier rejects
also the non-informative sub-windows and the process keeps on. After several stages of the
classifier, the number of sub-windows decrease quickly. Moreover the decision threshold is
readjusted as the classifier progresses. An extension of this cascade method is developed in
(Le & Satoh, 2004) with a final SVM classifier. First stages of the classifier use AdaBoost algo-
rithm to reduce the feature space and select relevant features. The last stage is a SVM classifier
which builds a face model from the features selected previously. This both methods allow to
reduce the features number in the first stages of the cascade. In this approach, the AdaBoost
algorithm is only used to select relevant features from a huge set of possible ones.
We propose here an original association of a classic AdaBoost algorithm with a kernel based
machine. Adaboost is an algorithm which builds a strong classifier by selecting a huge num-
ber of weak ones. It can be used for feature selection too: each feature can be seen as a weak
classifier and AdaBoost selects a subset of them. Our approach consists on using the result-
ing subset of weak relevant classifiers (and not relevant features) as binary vectors in a kernel
based machine learning classifier (like SVM).
We focus our proposal on pedestrian recognition: since pedestrians provide a large appear-
ance variability (size, clothes, skin colour, ...) the training set used for learning must be very
large. Numerous features are then used to describe correctly each sample of the training set.
The association of AdaBoost and kernel machine allows to handle this high dimensional prob-
lem.
This chapter is organized as follow: section 1 describes the main features used in classification;
then the classifiers methods is presented in section 2. Experiments and results of the proposed
method on a pedestrian recognition task are realizes in section 3; and finally section 4 gives
the conclusion.

2. Features for image description

In pattern recognition, different types of features are widely used to describe each image. For
many recognition system, the goal is to realize an on-line application, and features are cho-
sen according to that. These features have to be efficient of course but moreover to compute
quickly so as to reach an on-line processing time. We present here three types of features
widely used in pattren recognition: Haar wavelets, histograms of oriented gradients and bi-
nary descriptors.

2.1 Haar wavelets
They are probably the most used features for pattern recognition in images. Introduced by
Papageorgiou in (Papageorgiou & Poggio, 2000), they encode a local information with an in-
tensity difference at different scales.

The overcomplete dictionnary presented in (Papageorgiou & Poggio, 2000) allows a fast com-
putation of haar wavelets in threes directions: horizontal, vertical and diagonal (see figure
1) The main difficulty is to find adapted sizes for a given image. Indeed a finer scale only
captures noise whereas large scale doesn’t capture an object characteristics.

Fig. 1. The three different orientations of the Haar wavelets.

2.2 Histograms of Oriented Gradients
This image descriptor for image recognition was introced in (Dalal & Triggs, 2005). This de-
scriptor is a based on edge orientation histograms (Freeman & Roth, 1995) and SIFT descriptor
(Lowe, 2004) The idea is to count occurrences of gradient orientation in localized portions of
an image called cells. We thus obtain a dense grid of uniformly spaced cells and overlapping
local contrast normalization is used for improved performance. Here difficulties are to choose
a correct grid to describe an object and to select a correct normalization schema.

2.3 Binary descriptors
This kind of descriptor becomes very popular used in pattern recognition, especially for low
resolution images. It computes an intensity comparison of two points, which is an enough
resolution for small images. Various methods were proposed to select and associated them
(Lepetit & Fua, 2006; Moutarde et al., 2008). The points selection appears as the main problem
of this descriptor because it gives quickly a high dimensional feature vector if all the possibil-
ities space is cover up. We build our own binary descriptor based on the comparison result of
the grey levels as presented in the figure 2. Let us note u the coordinates of an image point.
I(u) returns the pixel intensity at this point, i.e. the grey level associated with these coordi-
nates in the image. Given two points of the image, u1 and u2, the descriptor carries out the
following comparison:

(I(u1) ≥ I(u2)) (with u1 �= u2) (1)

It returns the logical value 1 if the test is true and 0 if the test is false.

Fig. 2. Descriptor of grey-levels comparisons.
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3. Machine Learning

Today the machine learning used in image recognition are either Boosting method either Ker-
nel method. This section describes these learning methods.
Here, we follow the standard notations, representing the output labels by a scalar y which
can take two possible discrete values corresponding to the object class: y = −1 for negative
examples (non-objects) and y = 1 for positive examples (objects). Vectors x ∈ IRQ represents
input features provided by images descriptors. Let S .

= {(xi,yi)}N
i=1 denotes a training set

composed by N samples of feature vectors associated to their corresponding labels.

3.1 Adaptative Boosting or AdaBoost
This method is developped by Freund and Schapire in (Freund & Schapire, 1996). It’s the more
commun method of Boosting used for image recognition. The AdaBoost principle is straight
forward. As opinions of several experts are better than only one, this algorithm combines
decisions of several weak classifiers. An uniform weight is given for each data of the training
set. At each iteration, a subset of the training set is drawn from S according to the weights
assigned to them at the previous iteration. A weak classifier h(t) is created from this subsam-
ple and the classification error εt is calculated for the entire training set. The weight vector is
then updated: the weight of the elements well classified decreases, while the weight of those
badly classified increases. The process is reiterated until reaching the number of required
weak classifiers or until the error on the training set is lower than a given threshold.
The decision rule associated to Adaboost is then a linear combination of selected weak classi-
fiers:

y = sign(
T

∑
t=1

αtht(x)) (2)

where αt are weights estimated from the learning step. Equation (2) clearly shows that the
classification rule is given by the sign of a linear equation (hyperplane) into the selected weak
classifiers space.

3.2 Kernel Machine
Kernel based machines has been widely used for classification ((Suard et al., 2006),(Papageor-
giou & Poggio, 2000),(Shashua et al., 2004)). The general form of the classifier is given by:

y = sign

(
M

∑
m=1

wmφm(x)

)
(3)

Here, {φm(x)|m = 1...M} are basis functions and {wm|m = 1...M} are the associated weights.
We propose non linear basis functions:

φm(x) = k(x,xm) (4)

where k(x,xm) is a kernel function. The classification rule can be written in a more compact
form by the following equation:

y = sign(wTφ(x)) (5)

where wT = (w1,w2, ...,wM) is a weight vector and φ(x) = (φ(x1),φ(x2), ...,φ(xN)
T . To train

the model (estimate w), we are given the training set Sh = {(xi,yi)}N
i=1. We use the Euclidean

norm to measure y-space prediction errors, so the estimation problem is of the form:

w := argmin
w

{||wTΦ− y||2} (6)

where Φ .
=

(
φ(x1)),φ(x2), ...,φ(xN)

)
is the design matrix and y .

= (y1, ...yN)T is the training set
label vector. The estimation of the parameter vector w using the least-square criterion defined
in equation (6) is given by:1

wls = yΦ+ (7)

Alternative methods can be used to estimate w. A solution is to place priors over w in order to
set many weights to zero. The resulting model is then called sparse linear model. SVM (Sup-
port Vector Machine)(Vapnik, 1998) is a sparse linear model where the weights are estimated by
the minimization of a Lagrange multipliers based functional. Other sparse linear models, like
RVM (Relevant Vector Machines) (Tipping, 2001) may also be employed.
Vectors used for basis functions are usually composed by a subset of the training set Sh. It is
also possible to use the entire training set and in this case M = N. The matrix Φ is then sym-
metric and system resolution can be made more efficiently using Cholesky decomposition.
We make the common choice to use Gaussian data-centred basis functions:

φm(x) = exp
[
− (x − xm(x))2 /σ2

]
, (8)

which gives us a ”radial basis function” (RBF) type model from which the parameter σ must
be adjusted. On one hand, if σ is too small, the ”design matrix” Φ is mostly composed of
zeros. On the other hand, if σ is too large, Φ is mostly composed of ones. We propose to
adjust σ using a non linear optimization maximizing an empirical criteria based on the sum
of the variances computed for each line of the design matrix Φ:

σ := argmax
σ

[−C(σ)] (9)

with

C(σ) =
N

∑
n=1

M

∑
m=1

(
φm(x)− φ(x(n)(x))

)2
(10)

and

φ(x) =
1
M

M

∑
m=1

φm(x(n)(x)) (11)

The classifier thus obtained will be denoted by KHA (Kernel Approximation Hyperplane) in sec-
tion 4.

3.3 Classifiers Association
Our goal is to be able to recognize object with a great variability. For that, we use dataset
with a large number of examples, and each example is described by a huge features vector.
Using all this features set is prohibitive for the computation of kernel machines. That’s why
we propose here to use an Adaboost algorithm to choose only the more relevant features into
the training set. As AdaBoost selects the best weak classifiers for a classification task, the fea-
tures selected will be relevant for a kernel machine too. Here, we propose an original approach
which consists in selecting weak classifiers with AdaBoost (not relevant feature selection), and
then using the selected weak classifiers as new binary input vectors to learn a kernel based
classifier. This method provides non-linear separator in the weak learner space and classifies
accurately more examples as shown in figure 3; positive examples are denoted by symbol +,
negative examples by −. h1(x) and h2(x) are two weak classifiers selected by AdaBoost. They

1 Φ+ denotes the pseudo-inverse of Φ.
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= (y1, ...yN)T is the training set
label vector. The estimation of the parameter vector w using the least-square criterion defined
in equation (6) is given by:1

wls = yΦ+ (7)

Alternative methods can be used to estimate w. A solution is to place priors over w in order to
set many weights to zero. The resulting model is then called sparse linear model. SVM (Sup-
port Vector Machine)(Vapnik, 1998) is a sparse linear model where the weights are estimated by
the minimization of a Lagrange multipliers based functional. Other sparse linear models, like
RVM (Relevant Vector Machines) (Tipping, 2001) may also be employed.
Vectors used for basis functions are usually composed by a subset of the training set Sh. It is
also possible to use the entire training set and in this case M = N. The matrix Φ is then sym-
metric and system resolution can be made more efficiently using Cholesky decomposition.
We make the common choice to use Gaussian data-centred basis functions:

φm(x) = exp
[
− (x − xm(x))2 /σ2

]
, (8)

which gives us a ”radial basis function” (RBF) type model from which the parameter σ must
be adjusted. On one hand, if σ is too small, the ”design matrix” Φ is mostly composed of
zeros. On the other hand, if σ is too large, Φ is mostly composed of ones. We propose to
adjust σ using a non linear optimization maximizing an empirical criteria based on the sum
of the variances computed for each line of the design matrix Φ:

σ := argmax
σ

[−C(σ)] (9)

with

C(σ) =
N

∑
n=1

M

∑
m=1

(
φm(x)− φ(x(n)(x))

)2
(10)

and

φ(x) =
1
M

M

∑
m=1

φm(x(n)(x)) (11)

The classifier thus obtained will be denoted by KHA (Kernel Approximation Hyperplane) in sec-
tion 4.

3.3 Classifiers Association
Our goal is to be able to recognize object with a great variability. For that, we use dataset
with a large number of examples, and each example is described by a huge features vector.
Using all this features set is prohibitive for the computation of kernel machines. That’s why
we propose here to use an Adaboost algorithm to choose only the more relevant features into
the training set. As AdaBoost selects the best weak classifiers for a classification task, the fea-
tures selected will be relevant for a kernel machine too. Here, we propose an original approach
which consists in selecting weak classifiers with AdaBoost (not relevant feature selection), and
then using the selected weak classifiers as new binary input vectors to learn a kernel based
classifier. This method provides non-linear separator in the weak learner space and classifies
accurately more examples as shown in figure 3; positive examples are denoted by symbol +,
negative examples by −. h1(x) and h2(x) are two weak classifiers selected by AdaBoost. They

1 Φ+ denotes the pseudo-inverse of Φ.
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return value 1 for examples classified as positive and −1 for examples classified as negative.
In the weak learner space, AdaBoost provides a linear separator and some examples are mis-
classified. Our method provides non-linear separator and classified correctly all examples. So

Fig. 3. Our method provides non-linear separator while AdaBoost gives linear one.

the first stage of the learning process is doing by an AdaBoost algorithm which gives a new
binary training set for the kernel machines. We define Sh .

= {(h(xi),yi)}N
i=1 a new training

set where h(xi) ∈ IRT is a vector composed by the output of each selected classifier estimated

from parameters x such as h(xi)
.
=

(
h1(xi), ...,hT(xi)

)T . Next the classification rule for kernel
machines becomes:

y = sign

(
M

∑
m=1

wmφm(h(x))

)
(12)

and
φm(h(x)) = k(h(x),hm(x)) (13)

where k(h(x),hm(x)) is the kernel function. The estimation problem is given by equation (6)
and the resolution is done like presented in section 3.2 .

4. Experiments and Results

Fig. 4. Examples of pedestrian (first line) and non-pedestrian (second line) images.

We focus our work on pedestrian recognition in images coming from low-cost camera (see
(Leyrit et al., 2008)). This work is challenging because pedestrian is a hard pattern to recog-
nize due to the differences of clothes, size... added to classic illumination and background
variations. Since pedestrian appearance provides a large variability, the training set used in

the learning stage must be very huge and each sample can be described by a huge feature
vector. We used the images dataset provided by Gavrila and Munder in (Munder & Gavrila,
2006). This base is subdivided into five parts; each one contains 4800 positive and 5000 neg-
ative images. Each picture has a size of 36x18 pixels, in grey levels. In the positive images,
the pedestrians are standing and entirely visible; they were taken in various postures, and
in various illumination and background conditions. Each pedestrian picture was randomly
reflected and shift a few pixels in the horizontal and vertical directions. The negative images
describe the urban environment: trees, buildings, cars, roadsigns... This base (some examples
of which are shown in figure 4) constitutes the data used for training and the validation of the
proposed method. According to (Munder & Gavrila, 2006) the three first parts are used for
the training, and the two last ones are used for the validation. It assumes that the validation
is doing independently of the training.

4.1 The proposed method compared to a standard AdaBoost
In this part we compare the results of a standard AdaBoost to the ones given by the proposed
method. We use here the association of the binary output of the AdaBoost with a KHA kernel
machine. Results are obtained for the descriptor of grey level comparisons (see paragraph
2.1). We make these comparisons between points belonging to the same line or the same
column. As the image size is of 36x18 pixels, we obtain 5508 binary descriptors for the lines
and 11340 for the columns.
The table 1 gives recognition errors for these experiments; the class decision rule is computed
with a classical threshold set to zero. We also plot ROC curves for each experiments as shown

Classifier Learning set Error on Error on
number validation set 4 validation set 5

Standard AdaBoost 1 27,49% 25.09%
Association with KHA 1 30,61% 24,21%

Standard AdaBoost 2 26,81% 31,69%
Association with KHA 2 16,62% 14,81%

Standard AdaBoost 3 44,79% 44,71%
Association with KHA 3 21,42% 13,48%

Table 1. Comparison between standard AdaBoost and the classifiers association using grey-
level features.

in figure 5 for more precision. A ROC curve (Receiver Operating Characteristic) presents vari-
ations and sensitivity of a test for various values of the discrimination threshold. The x-axis
represents the false negative rate (non-pedestrians classified as pedestrians) while the y-axis
corresponds to the true positive rate (of the pedestrians which are well detected as such). Let
us suppose a ROC curve through the point (0.1;0.9). That means that for 90% of the well classi-
fied pedestrians, 10% of non-pedestrians are badly classified. Most of the time, the classifiers
association gives best results than a standard AdaBoost. In this way, we can achieve good
recognition rate despite the high dimensional size of the features vectors.

4.2 Comparison between two different kernel machines
We tested the proposed method with a SVM kernel machine. Results are given in table 2
(decision threshold set to zero) and ROC curves are presented in figure 6. With a decision
threshold set to zero, KHA gives better results; but we can see in figure 6 that for other decision
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machine. Results are obtained for the descriptor of grey level comparisons (see paragraph
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us suppose a ROC curve through the point (0.1;0.9). That means that for 90% of the well classi-
fied pedestrians, 10% of non-pedestrians are badly classified. Most of the time, the classifiers
association gives best results than a standard AdaBoost. In this way, we can achieve good
recognition rate despite the high dimensional size of the features vectors.

4.2 Comparison between two different kernel machines
We tested the proposed method with a SVM kernel machine. Results are given in table 2
(decision threshold set to zero) and ROC curves are presented in figure 6. With a decision
threshold set to zero, KHA gives better results; but we can see in figure 6 that for other decision
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Fig. 5. Comparison between standard Adaboost and the proposed method.

thresholds, SVM reachs equivalent recognition rate. The decision threshold should be selected
carrefully according to each application. It depends on the rate of misclassified an application
can tolerate.

Classifier Learning set Error on Error on
number validation set 4 validation set 5

Association with KHA 1 30,61% 24,21%
Association with SVM 1 30,62% 25,70%
Association with KHA 2 16,62% 14,81%
Association with SVM 2 20,76% 21,09%
Association with KHA 3 21,42% 13,48%
Association with SVM 3 30,96% 27,86%

Table 2. Errors of the proposed method with two different kernel machines.

4.3 Comparison between three descriptors
We have implemented the three descriptors presented in section 2: the histograms of oriented
gradients (HOG), Haar wavelets and our grey-level descriptor.
We chose a Haar wavelets size of 2x2 and 4x4, shifted by 1

4 of the size of the wavelet in the
three directions (see paragraph 2.1). It gives 1755 features.
As regards the HOG, we chose a cutting into 3x3 cells, and histograms are computed with 8
bins. We thus obtain 576 features.
For the two previous descriptors, the feature vector is relatively small and doesn’t require a
previous weak classifier selection. We only use the complete method for the binary descriptor.
Then a KHA kernel machine is trained on each dataset.

Fig. 6. The proposed method implemented with two different kernel machines.

The results presented in table 3 and in figure 7 show that these three descriptors work into
almost the same range of values. With more precison, ROC curves show that histogramms
of oriented gradients are better for these pedestrian recognition task. The binary descriptor,
despite its simplicity, achieves almost same results. Haar wavelets doesn’t reach the same
performances than the two others descriptors.

Descriptor Learning set Error on Error on
number validation set 4 validation set 5

HOG 1 24,99% 21.17%
Haar wavelets 1 31,54 % 31,18%

Grey-level descriptor 1 30,61% 24,21%
HOG 2 26,17% 21,39%

Haar wavelets 2 20,35% 20,55%
Grey-level descriptor 2 16,62% 14,81%

HOG 3 18,84% 16,32%
Haar wavelets 3 21,84% 16,32%

Grey-level descriptor 3 21,42% 13,48%
Table 3. Errors with three different descriptors.
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Fig. 7. Comparison between three different descriptors.

5. Conclusion and future works

We have proposed a learning based approach for high dimensional object detection. This
method uses an AdaBoost algorithm to select relevant weak classifiers, which are then used
as binary vectors to learn a kernel based classifier.
This method helps to solve high dimensional problem like a pedestrian recognition task; re-
sults show that the method gives good performances and outperforms standard AdaBoost.
Three popular descriptors have been tested; histograms of oriented gradients give the best
results but the binary descriptors reach almost the same results, which is very interesting for
a real-time application. Haar wavelets are less competitive than the two others descriptors.
We have designed our own classifier, KHA, which gives similar results than a SVM classi-
fier. KHA is easy to develop but we explore now solutions to decrease the number of retained
support vectors and to select relevant ones. It should help us to reach faster computation time.
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1. Introduction

Kernel principal component analysis (KPCA) (Schölkopf et al., 1998) has proven to be an ex-
ceedingly popular technique in the fields of machine learning and pattern recognition, and
is discussed at length in literature. KPCA is to perform linear PCA (Hotelling, 1933; Jol-
liffe, 2002) in a high- (and possibly infinite-) dimensional kernel-defined feature space that is
typically induced by a nonlinear mapping. In implementation, the so-called kernel trick is
employed. Namely, KPCA is expressed in terms of dot products between the mapped data
points, and the dot products are then evaluated by substituting an a priori kernel function.
KPCA has demonstrated to be an incredibly useful tool for many application areas includ-
ing handwritten digits recognition and de-noising (Schölkopf et al., 1998; Mika et al., 1999;
Schölkopf et al., 1999), nonlinear regression (Rosipal et al., 2001), face recognition (Kim et al.,
2002a; Yang, 2002; Kong et al., 2005), and complex image analysis (Kim et al., 2005; Li et al.,
2008).
In practice, however, we are often confronted with the situation that needs to process a large
number of data points. This raises a problem for KPCA, since KPCA has to store and di-
agonalize the kernel matrix (also known as Gram matrix), whose size is equal to the square
of the number of training samples. So, for large scale data set, KPCA would consume large
storage space and be computationally intensive (with time complexity O(n3), a cubic growth
with n, where n is the number of the training samples). Then it is impractical for KPCA to
be applied in some circumstances. Another attendant problem is that eig-decomposing large
matrix directly suffers from the issue of numerical accuracy. Some algorithms have been de-
veloped to address the drawbacks associated with KPCA. By considering KPCA from a prob-
abilistic point of view, Rosipal and Girolami (2001) presented an expectation maximization
(EM) (Dempster et al., 1977; McLachlan & Krishnan, 1997) method for carrying out KPCA.
Their algorithm is of computational complexity O(pn2) per iteration, where p is the number
of extracted components. Whereas the EM algorithm for KPCA does alleviate computational
demand, there exists a rotational ambiguity with the algorithm. To remove the obscurity, a
constrained EM algorithm for KPCA (and PCA) was formulated based on coupled probabil-
ity model (Ahn & Oh, 2003). Also, one deficiency of these EM-type algorithms is that the
kernel matrix still required to be stored. Kim et al. (2005) then derived the kernel Hebbian
algorithm (KHA), which was the counterpart of the generalized Hebbian algorithm (GHA)
(Sanger, 1989), to iteratively perform KPCA, where only linear order memory complexity was

7
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involved. However, the price one has to pay for this saving is that the time complexity is
not under control. Motivated by the idea “divide and rule”, Zheng et el. (2005) proposed
another improved algorithm for KPCA as follows. First, the entire data set was divided into
some smaller data sets, then the sample covariance matrix of each smaller data set was ap-
proximately computed, and finally kernel principal components were extracted by combin-
ing these approximate covariance matrices. With their method, the computational demand
and memory requirement are effectively relieved. However, the advantages relate with many
factors such as the required accuracy of extracted components, the number of the divided
smaller data sets (which is usually empirically set), and the data to be processed. As a generic
methodology, another thread of speeding up kernel machine learning is to seek a low-rank
approximation to the kernel matrix. Since, as noted by several researchers, the spectrum of
the kernel matrix tends to decay rapidly, the low-rank approximation often achieves sufficient
precision of the requirement. Williams and Seeger (2001) used Nyström method to compute
the approximate eigenvalue decomposition of the kernel matrix. Also, Smola and Schölkopf
(2000) presented a sparse greedy approximation technique. These two methods yield similar
forms and performances.
Another limitation of KPCA is that it defines only a global projection of the samples. When the
distribution of the data points is complex and non-convex, a global subspace based on KPCA
may fail to deliver good performance in terms of feature extraction and recognition. In input
space, Tipping and Bishop (1999) and Roweis and Ghahramani (1999) introduced mixture of
PCA to remedy the same shortcoming of PCA. Kim et al. (2002b) used mixture-of-eigenfaces
for face recognition. There are many other papers on face recognition using mixture method,
but as they do not focus on KPCA, references are omitted.
The contributions of this chaper are twofold: Firstly, viewing KPCA as a problem in primal
space with the “samples” created by using the incomplete Cholesky decomposition, we show
that KPCA is equivalent to performing linear PCA in the primal space using the created sam-
ples. So, the same kernel principal components as the standard KPCA are produced. Con-
sequently, all the improved methods dealing with linear PCA (such as the constrained EM
algorithm and the GHA method mentioned above), as well as directly diagonalizing the co-
variance matrix, could be applied to the created samples in the primal space to extract kernel
principal components. Theoretical analysis and experimental results on both artificial and real
data have shown the superiority of the proposed method for performing KPCA in terms of
computational efficiency and storage space, especially when the number of the data points is
large. Secondly, we extend KPCA to a mixture of local KPCA models by applying the mixture
model of the probabilistic PCA in the primal space. While KPCA uses one set of features to
model the data points, the mixture of KPCA uses more than one set of features. Therefore,
the mixture of KPCA is expected to represent data more effectively and has better recognition
performance than KPCA, which is also confirmed by the experiments.
The remainder of this chaper is organized as follows. The standard KPCA is briefly reviewed
in Section 2, and in Section 3, we formulate KPCA in the primal space using the incomplete
Cholesky decomposition. Next, we extend KPCA to its mixture model in Section 4. Experi-
mental results are presented in Section 5. In Section 6, we draw the conclusion.

2. Kernel Principal Component Analysis

Suppose xi ∈ Rl , i = 1, . . . ,n, are n observations. The basic idea of KPCA is as follows. First, the
samples are mapped into some potentially high- (and possibly infinite-) dimensional feature

space F
φ : Rl →F , xi �→ φ(xi), (i = 1, . . . ,n) (1)

where φ is a typically nonlinear function. Then a standard linear PCA is performed in F using
the mapped samples. In evaluation, we don’t have to compute the mapping φ explicitly. The
mapped samples occur in the forms of dot products, say between φ(xi) and φ(xj), which are
computed by choosing a kernel function k:

k(xi,xj) = (φ(xi) · φ(xj)). (2)

The mapping φ into F such that (2) stands exists if k is a positive definite kernel, thanks to
Mercer’s theorem of functional analysis. So, the mapping φ and thus F are fixed implicitly
via the function k. The dth-order polynomial kernel, k(xi,xj) = (xi · xj)

d, Gaussian kernel with
width σ > 0, k(xi,xj) = exp(−‖xi − xj‖2/2σ2), and sigmoid kernel k(xi,xj) = tanh(a(xi · xj) +
b) are commonly used Mercer kernels.
For notation simplicity, the mapped samples are assumed to be centered, i.e. ∑n

i=1 φ(xi) = 0.
We wish to find eigenvalues λ > 0 and associated eigenvectors v ∈ F \ {0} of the covariance
matrix of the mapped samples φ(xi), given by

Cφ =
1
n

n

∑
i=1

φ(xi)φ(xi)
T, (3)

where T denotes the transpose of a vector or matrix. Since the mapping φ is implicit or Cφ

is very high dimensional, direct eigenvalue decomposition will be intractable. The difficulty
is circumvented by using the so-called kernel trick; that is, linear PCA in F is formulated
such that all the occurrences of φ are in the forms of dot products. And the dot products
are then replaced by the kernel function k. So, dealing with the φ-mapped data explicitly is
avoided. Specifically, since λv = Cφv, all solutions v with λ �= 0 fall in the subspace spanned
by {φ(x1), . . . ,φ(xn)}. Therefore, v could be linearly represented by φ(xi):

v =
n

∑
i=1

αiφ(xi), (4)

where αi (i = 1, . . . ,n) are coefficients. The eigenvalue problem is then reduced as the following
equivalent problem

λ(φ(xj) · v) = (φ(xj) · Cφv) for all j = 1, . . . ,n. (5)

Substituting (3) and (4) into (5), we arrive at the eigenvalue equation

nλKα = K2α ⇒ nλα = Kα, (6)

where α denotes a column vector with entries α1, . . . ,αn, and K, called kernel matrix, is an
n × n matrix with elements defined as

Kij = k(xi,xj) = (φ(xi) · φ(xj)). (7)

Assume that t is a testing point whose φ-image is φ(t) in F . We calculate its kernel princi-
pal components by projecting φ(t) onto the kth eigenvectors vk. Specifically, the kth kernel
principal components corresponding φ are

(vk · φ(t)) =
n

∑
i=1

αk
i (φ(xi) · φ(t)) =

n

∑
i=1

αk
i k(xi, t), (8)
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model of the probabilistic PCA in the primal space. While KPCA uses one set of features to
model the data points, the mixture of KPCA uses more than one set of features. Therefore,
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mental results are presented in Section 5. In Section 6, we draw the conclusion.

2. Kernel Principal Component Analysis

Suppose xi ∈ Rl , i = 1, . . . ,n, are n observations. The basic idea of KPCA is as follows. First, the
samples are mapped into some potentially high- (and possibly infinite-) dimensional feature

space F
φ : Rl →F , xi �→ φ(xi), (i = 1, . . . ,n) (1)

where φ is a typically nonlinear function. Then a standard linear PCA is performed in F using
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where α denotes a column vector with entries α1, . . . ,αn, and K, called kernel matrix, is an
n × n matrix with elements defined as
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Assume that t is a testing point whose φ-image is φ(t) in F . We calculate its kernel princi-
pal components by projecting φ(t) onto the kth eigenvectors vk. Specifically, the kth kernel
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where αk has been normalized such that λk(α
k · αk) = 1. Note that centering the vectors φ(xi)

and t in F is realized by centering the corresponding kernel matrices (Schölkopf et al., 1998).

3. Kernel Principal Component Analysis in Primal Space

In this section, we will derive KPCA in the primal space with the samples created by us-
ing the incomplete Cholesky decomposition. Let φ(X) = [φ(x1), . . . ,φ(xn)] be the data matrix
containing all the φ-mapped training samples as columns. By partial Gram-Schmidt orthonor-
malization (Cristianini et al., 2002), we factorize the data matrix φ(X) as

φ(X) = QR, (9)

where Q has m orthonormal columns, R ∈ Rm×n is an upper triangular matrix with positive
diagonal elements, and m is the rank of φ(X). Note that the matrix R could be evaluated row
by row without computing φ explicitly. The partial Gram-Schmidt procedure pivots the sam-
ples and selects the linearly independent samples in the feature space F . The orthogonalized
version of the selected independent samples, i.e. the columns of Q, is thus used as a set of
basis. All φ-mapped data points could be linearly represented using the basis. Specifically,
the ith column of the matrix R are the coefficients for the linear representation of φ(xi) using
the columns of Q as the basis. So, the columns of R are, in fact, the new coordinates in the
feature space of the corresponding data points of φ(X) using the basis. By (9), the following
decomposition of the kernel matrix is yielded:

K = φ(X)Tφ(X) = RTQTQR = RTR, (10)

which is the incomplete Cholesky decomposition (Fine & Scheinberg, 2001; Bach & Jordan,
2002).
From (10), if defining a new mapping

φ̃ : F → Rm, φ(xi) �→ ri, (i = 1, . . . ,n) (11)

where ri is the ith column of R, then the n vectors {r1, . . . ,rn} give rise to the same Gram matrix
K (Shawe-Taylor & Cristianini, 2004); that is

(φ(xi) · φ(xj)) = k(xi,xj) = (ri · rj). (12)

The space Rm is referred to as the primal space, and ri (i = 1, . . . ,n) are viewed as “samples”.
From (9), we see that, if φ(xi) are centered, then ri are also centered. In other words, ri could
be centered by centering the kernel matrix K. By using the samples ri created in the primal
space Rm, we have the following
Theorem 1. Given observations xi (i = 1, . . . ,n) and kernel function k, KPCA is equivalent to per-
forming linear PCA in the primal space Rm using the created samples ri (i = 1, . . . ,n), both of which
produce the same kernel principal components.
Proof. It suffices to note that the dot products between the φ-mapped samples in the feature
space F are the same with that between the corresponding φ̃-mapped samples in the primal
space Rm, and linear PCA in both the feature space F (i.e., KPCA) and the primal space Rm

could be represented through the forms of dot products between samples. The equivalence
between KPCA and linear PCA in the primal space is schematically illustrated as follows:

diagonalize Gram matrix K = φ(X)Tφ(X) ≡ diagonalize Gram matrix K = RTR
� through dot products � through dot products

KPCA, i.e., linear PCA in F with samples φ(xi) linear PCA in Rm with samples ri

The theorem is thus established. �
In the primal space, we could, of course, carry out linear PCA by using the dual expression
of dot products; but this obviously makes the motivation for creating the new samples in the
primal space useless. Considering the dimension of the primal space, m, is small, we perform
linear PCA by directly diagonalizing the m×m covariance matrix of the φ̃-mapped data points
ri, given by

Cφ̃ =
1
n

n

∑
i=1

rir
T
i =

1
n

RRT. (13)

Let λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃m be the eigenvalues of Cφ̃, and ṽ1, . . . , ṽm the corresponding eigenvec-
tors. We proceed to compute the kernel principal components of the testing point t. Firstly, we
need to compute its φ̃-image. We carry out the projections of φ(t) onto the basis vectors, i.e.,
the columns of Q. This is achieved by calculating an extensional column of the matrix R in
the partial Gram-Schmidt procedure (Shawe-Taylor & Cristianini, 2004). The kernel principal
components corresponding to φ are then computed as

(ṽk · r̄) (14)

for k = 1, . . . , p, where r̄ is the φ̃-image of φ(t) and p (≤ m) is the number of components.
Alternatively, all improved methods dealing with linear PCA could be applied to R in the
primal space. For example, with the constrained EM algorithm for PCA (Ahn & Oh, 2003), we
obtain iterative formula

E step: Z = (L(ΓTΓ))−1ΓTR, (15)

M step: Γnew = RZT(U (ZZT))−1, (16)

where the element-wise lower operator L is defined such as L(wst) = wst for s ≥ t and is
zero otherwise, the upper operator U is defined such as U (wst) = wst for s ≤ t and is zero
otherwise, and Z denotes the p × n matrix of latent variables. The matrix Γ at convergence is
equal to Γ = VΛ, where the columns of V = [ṽ1, . . . , ṽp] are the first p eigenvectors of Cφ̃, with
corresponding eigenvalues λ̃1, . . . , λ̃p forming the diagonal matrix Λ. Another extensively
used iterative method for PCA is the generalized Hebbian algorithm (GHA) (Sanger, 1989).
Based on GHA, the m × p eigenvectors matrix V corresponding to the p largest eigenvalues is
updated according to the rule

V(t + 1) = V(t) + δ(t)
(

r(t)y(t)T − V(t)U (y(t)y(t)T)
)

, (17)

where y = VTr is the principal component of r, δ(t) is a learning rate parameter. Here, the
argument t denotes a discrete time when a sample r(t) is selected randomly from all the sam-
ples ri. It has been shown by Sanger (1989) that, for proper setting of learning rate δ(t) and
initialization V(0), the columns of V converge to the eigenvectors of Cφ̃ as t tends to infinity.
In summary, the procedure of the proposed algorithm for performing KPCA is outlined as
follows:
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where αk has been normalized such that λk(α
k · αk) = 1. Note that centering the vectors φ(xi)

and t in F is realized by centering the corresponding kernel matrices (Schölkopf et al., 1998).

3. Kernel Principal Component Analysis in Primal Space

In this section, we will derive KPCA in the primal space with the samples created by us-
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basis. All φ-mapped data points could be linearly represented using the basis. Specifically,
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feature space of the corresponding data points of φ(X) using the basis. By (9), the following
decomposition of the kernel matrix is yielded:

K = φ(X)Tφ(X) = RTQTQR = RTR, (10)
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From (10), if defining a new mapping
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where ri is the ith column of R, then the n vectors {r1, . . . ,rn} give rise to the same Gram matrix
K (Shawe-Taylor & Cristianini, 2004); that is

(φ(xi) · φ(xj)) = k(xi,xj) = (ri · rj). (12)

The space Rm is referred to as the primal space, and ri (i = 1, . . . ,n) are viewed as “samples”.
From (9), we see that, if φ(xi) are centered, then ri are also centered. In other words, ri could
be centered by centering the kernel matrix K. By using the samples ri created in the primal
space Rm, we have the following
Theorem 1. Given observations xi (i = 1, . . . ,n) and kernel function k, KPCA is equivalent to per-
forming linear PCA in the primal space Rm using the created samples ri (i = 1, . . . ,n), both of which
produce the same kernel principal components.
Proof. It suffices to note that the dot products between the φ-mapped samples in the feature
space F are the same with that between the corresponding φ̃-mapped samples in the primal
space Rm, and linear PCA in both the feature space F (i.e., KPCA) and the primal space Rm

could be represented through the forms of dot products between samples. The equivalence
between KPCA and linear PCA in the primal space is schematically illustrated as follows:

diagonalize Gram matrix K = φ(X)Tφ(X) ≡ diagonalize Gram matrix K = RTR
� through dot products � through dot products

KPCA, i.e., linear PCA in F with samples φ(xi) linear PCA in Rm with samples ri

The theorem is thus established. �
In the primal space, we could, of course, carry out linear PCA by using the dual expression
of dot products; but this obviously makes the motivation for creating the new samples in the
primal space useless. Considering the dimension of the primal space, m, is small, we perform
linear PCA by directly diagonalizing the m×m covariance matrix of the φ̃-mapped data points
ri, given by
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Let λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃m be the eigenvalues of Cφ̃, and ṽ1, . . . , ṽm the corresponding eigenvec-
tors. We proceed to compute the kernel principal components of the testing point t. Firstly, we
need to compute its φ̃-image. We carry out the projections of φ(t) onto the basis vectors, i.e.,
the columns of Q. This is achieved by calculating an extensional column of the matrix R in
the partial Gram-Schmidt procedure (Shawe-Taylor & Cristianini, 2004). The kernel principal
components corresponding to φ are then computed as

(ṽk · r̄) (14)

for k = 1, . . . , p, where r̄ is the φ̃-image of φ(t) and p (≤ m) is the number of components.
Alternatively, all improved methods dealing with linear PCA could be applied to R in the
primal space. For example, with the constrained EM algorithm for PCA (Ahn & Oh, 2003), we
obtain iterative formula

E step: Z = (L(ΓTΓ))−1ΓTR, (15)

M step: Γnew = RZT(U (ZZT))−1, (16)

where the element-wise lower operator L is defined such as L(wst) = wst for s ≥ t and is
zero otherwise, the upper operator U is defined such as U (wst) = wst for s ≤ t and is zero
otherwise, and Z denotes the p × n matrix of latent variables. The matrix Γ at convergence is
equal to Γ = VΛ, where the columns of V = [ṽ1, . . . , ṽp] are the first p eigenvectors of Cφ̃, with
corresponding eigenvalues λ̃1, . . . , λ̃p forming the diagonal matrix Λ. Another extensively
used iterative method for PCA is the generalized Hebbian algorithm (GHA) (Sanger, 1989).
Based on GHA, the m × p eigenvectors matrix V corresponding to the p largest eigenvalues is
updated according to the rule

V(t + 1) = V(t) + δ(t)
(

r(t)y(t)T − V(t)U (y(t)y(t)T)
)
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where y = VTr is the principal component of r, δ(t) is a learning rate parameter. Here, the
argument t denotes a discrete time when a sample r(t) is selected randomly from all the sam-
ples ri. It has been shown by Sanger (1989) that, for proper setting of learning rate δ(t) and
initialization V(0), the columns of V converge to the eigenvectors of Cφ̃ as t tends to infinity.
In summary, the procedure of the proposed algorithm for performing KPCA is outlined as
follows:
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1. Perform the incomplete Cholesky decomposition for the training points as well as test-
ing points to obtain R and r̄;

2. Compute the p leading eigenvectors corresponding to the first p largest eigenvalues of
the covariance matrix Cφ̃ (defined in (13)) by (a) directly diagonalizing Cφ̃, (b) using the
constrained EM algorithm (according to (15) and (16)), or (c) using the GHA algorithm
(according to (17));

3. Extract kernel principal components by projecting each testing point onto the eigenvec-
tors (according to (14)).

Complexity analysis. The computational complexity of performing the incomplete Cholesky
decomposition is of the order O(m2n), and the storage requirement is O(mn). Next, if one
explicitly evaluates the covariance matrix Cφ̃ followed by diagonalization to obtain the eigen-
vectors, the computational and storage complexity are O(m2n+m3) and O((p+m)m), respec-
tively. When p � m, it is possible to obtain computational savings by using the constrained
EM algorithm, the time and storage complexity of which are respectively O(pmn) per itera-
tion and O(p(m + n)). If using the GHA method, the time complexity is O(p2m) per iteration
and storage complexity O(pm). The potential efficiency gains, nevertheless, depend on the
number of iterations needed to reach the required precision and the ratio of m to p. As one
has seen, the proposed method do not need to store the kernel matrix K, the storage of which
is O(n2), and its computational complexity compares favorably with that of the traditional
KPCA, which scales as O(n3).

4. Mixture of Kernel Principal Component Analysis Models

Single KPCA provides only a globally linear model for data representation in a low dimen-
sional subspace. It may be insufficient to model (heterogeneous) data with large variation.
One remedy method is to model the complex data with a mixture of local linear sub-models.
Considering KPCA in its equivalent form in the primal space, and using the mixture model
in the primal space (Tipping & Bishop, 1999), we extend KPCA to a mixture of local KPCA
models. While KPCA uses one set of features for the data points, the mixture of KPCA uses
more than one set of features. Mathematically, in the primal space, we suppose that r1, . . . ,rn
are generated independently from a mixture of g underlying populations with unknown pro-
portion π1, . . . ,πg

ri = µj + Γjzij + εij,with probability πj, (j = 1, . . . , g; i = 1, . . . ,m) (18)

where µj is a m-dimensional non-random vector, the m × p matrix Γj is known as the factor
loading matrix, zij are p-dimensional latent (unobservable) variables (also known as common
factors), εij are m-dimensional error variables, and πj is the corresponding mixing proportion
with πj > 0 and ∑

g
j=1 πj = 1. The generative model (18) assumes that z1j, . . . ,znj are indepen-

dently and identically distributed (i.i.d.) as Gaussian with zero mean and identity covariance,
ε1j, . . . , εnj i.i.d. as Gaussian with mean zero and covariance matrix σ2

j Im, and zij is indepen-
dent with εij and their joint distribution is Gaussian.
In the case of g = 1, it was shown by Tipping and Bishop (1999) and Roweis and Ghahramani
(1999) that, as the noise level σ2

1 becomes infinitesimal, the PCA model in the primal space
was recovered, which just is KPCA as shown in Section 3. So, model (18) is an extension to
KPCA. We refer to (18) as mixture of KPCA (MKPCA). Note that a separate mean vector µj is

associated with each component of the g mixture model, therefore allowing each component
to model the data covariance structure in different regions of the primal space.
Since the true classification of ri into components are unknown, we use the marginal proba-
bility density function (p.d.f.) that is a g-component Gaussian mixture p.d.f.

f (ri;Θ) =
g

∑
j=1

πj ϕ(ri;µj,Σj) (19)

for the observations, where ϕ(ri;µj,Σj) is the Gaussian p.d.f. with mean µj

and variance Σj = ΓjΓT
j + σ2

j Im, the model parameters are given by Θ =

(µ1, . . . ,µg,Γ1, . . . ,Γg,σ2
1 , . . . ,σ2

g ,π1, . . . ,πg). For log-likelihood maximization, the model
parameters could be estimated via the EM algorithm as follows (Tipping & Bishop, 1999).
The E-step is
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In the case σ2
j → 0, the converged Γ̂j contains the (scaled) eigenvectors of the local covariance

matrix Ŝj. Each component performs a local PCA weighted by the mixing proportion. And
the Γ̂j in the limit case are updated as
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1. Perform the incomplete Cholesky decomposition for the training points as well as test-
ing points to obtain R and r̄;

2. Compute the p leading eigenvectors corresponding to the first p largest eigenvalues of
the covariance matrix Cφ̃ (defined in (13)) by (a) directly diagonalizing Cφ̃, (b) using the
constrained EM algorithm (according to (15) and (16)), or (c) using the GHA algorithm
(according to (17));

3. Extract kernel principal components by projecting each testing point onto the eigenvec-
tors (according to (14)).

Complexity analysis. The computational complexity of performing the incomplete Cholesky
decomposition is of the order O(m2n), and the storage requirement is O(mn). Next, if one
explicitly evaluates the covariance matrix Cφ̃ followed by diagonalization to obtain the eigen-
vectors, the computational and storage complexity are O(m2n+m3) and O((p+m)m), respec-
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tion and O(p(m + n)). If using the GHA method, the time complexity is O(p2m) per iteration
and storage complexity O(pm). The potential efficiency gains, nevertheless, depend on the
number of iterations needed to reach the required precision and the ratio of m to p. As one
has seen, the proposed method do not need to store the kernel matrix K, the storage of which
is O(n2), and its computational complexity compares favorably with that of the traditional
KPCA, which scales as O(n3).

4. Mixture of Kernel Principal Component Analysis Models

Single KPCA provides only a globally linear model for data representation in a low dimen-
sional subspace. It may be insufficient to model (heterogeneous) data with large variation.
One remedy method is to model the complex data with a mixture of local linear sub-models.
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portion π1, . . . ,πg
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where µj is a m-dimensional non-random vector, the m × p matrix Γj is known as the factor
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(1999) that, as the noise level σ2

1 becomes infinitesimal, the PCA model in the primal space
was recovered, which just is KPCA as shown in Section 3. So, model (18) is an extension to
KPCA. We refer to (18) as mixture of KPCA (MKPCA). Note that a separate mean vector µj is

associated with each component of the g mixture model, therefore allowing each component
to model the data covariance structure in different regions of the primal space.
Since the true classification of ri into components are unknown, we use the marginal proba-
bility density function (p.d.f.) that is a g-component Gaussian mixture p.d.f.
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for the observations, where ϕ(ri;µj,Σj) is the Gaussian p.d.f. with mean µj
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g ,π1, . . . ,πg). For log-likelihood maximization, the model
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ẑ(k)nj

nπ̂
(k+1)
j

(rn − µ̂
(k+1)
j )


 .



New Advances in Machine Learning112

Methods for Size of matrix needed Training time Storage space
performing KPCA to be diagonalized (seconds) (M bytes)
Standard KPCA 2000 × 2000 293 90
Proposed KPCA 233 × 233 36 2
MKPCA N.A. 63 5

Table 1. Comparison of training time and storage space on the toy example with 2000 data
points.

Number of Standard KPCA Proposed KPCA MKPCA
features d=2 3 4 d=2 3 4 d=2 3 4

32 93.6 93.6 92.5 93.5 93.6 92.4 94.5 94.3 93.5
64 94.3 93.1 93.0 94.2 93.0 93.0 95.2 94.2 94.1

128 94.4 93.7 93.2 94.4 93.5 93.1 95.0 94.1 94.0
256 94.5 93.5 92.9 94.4 93.8 92.9 94.9 94.4 94.0
512 94.3 93.9 92.8 N.A. 93.8 92.8 N.A. 94.1 93.6

1024 94.5 93.9 92.4 N.A. N.A. 92.4 N.A. N.A. 93.1

Table 2. Recognition rates of the 2007 testing points of the USPS handwritten digit database
using the standard KPCA, proposed KPCA and MKPCA methods with polynomial kernel of
degree two through four.

When the noise level becomes infinitesimal, the component p.d.f. ϕ(ri; µ̂
(k)
i , Σ̂(k)

i ) in (20) is

singular. It, in probability 1, falls in the p-dimensional subspace span{Γ̂(k)
j }, i.e.,

ϕ(ri; µ̂
(k)
i , Σ̂(k)

i ) = (2π)−p/2
(

det(Γ̂(k)T
j Γ̂(k)
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)−1/2

exp
(
−â(k)Tâ(k)/2

)
, (27)

where â(k) = (Γ̂(k)T
j Γ̂(k)

j )−1Γ̂(k)T
j (ri − µ̂

(k)
j ).

As can be seen, by applying the KPCA mixture model, all the observations are softly divided
into g clusters each modelled by a local KPCA. We use the most appropriate local KPCA for
a given observation. Based on the probabilistic framework, a natural choice is to assign the
observation to the cluster belong to which its posterior probability is the largest.

5. Experiments

In this section, we will use both artificial and real data sets to compare the performance of the
proposed method with that of the standard KPCA (Schölkopf et al., 1998). In the first example,
we use toy data to visually compare the results by projecting testing points onto extracted
principal axes, and to show that the proposed method is superior to the standard KPCA in
terms of time and storage complexity. In the second example, we perform the experiment of
handwritten digital character recognition to further illustrate the effectiveness of the proposed
method. All these experiments are run with the settings of 3.06GHz CPU and 3.62GB RAM
using Matlab software.
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Fig. 1. From left to right, the first three kernel principal components extracted by the standard
KPCA (top), proposed KPCA (middle), and MKPCA method with g= 2 (bottom), respectively,
using the Gaussian kernel k(xi,xj) = exp(−‖xi − xj‖2/0.1). The feature values are illustrated
by shading and constant values are connected by contour lines.

5.1 Toy Example
The data are generated from four two-dimensional parabolic shape clusters that are verti-
cally and horizontally mirrored by the function y = x2 + ε, where x-values are uniformly
distributed within [−1, 1] and ε is Gaussian distributed noise having mean 0.6 and standard
deviation 0.1. We generate 500 data points for each parabolic shape, and use the Gaussian
kernel with σ2 = 0.05 through the experiment. The standard KPCA, proposed KPCA (by, in
this experiment, using the incomplete Cholesky decomposition followed by directly diagonal-
izing Cφ̃), and MKPCA methods are adopted to calculate the leading principal components of
the data set. In using the two proposed methods, we choose 233 linearly independent samples
from the entire 2000 samples, i.e., m = 233, during the incomplete Cholesky decomposition,
and set g = 2 for performing the MKPCA. Therefore, the proposed KPCA method consumes
much less time and storage space than that of the standard KPCA (to see table 1 for detailed
comparison). In Fig. 1, we depict the first three kernel principal components extracted by the
three methods. The features are indicated by shading and constant feature values are con-



From Feature Space to Primal Space: KPCA and Its Mixture Model 113

Methods for Size of matrix needed Training time Storage space
performing KPCA to be diagonalized (seconds) (M bytes)
Standard KPCA 2000 × 2000 293 90
Proposed KPCA 233 × 233 36 2
MKPCA N.A. 63 5

Table 1. Comparison of training time and storage space on the toy example with 2000 data
points.

Number of Standard KPCA Proposed KPCA MKPCA
features d=2 3 4 d=2 3 4 d=2 3 4

32 93.6 93.6 92.5 93.5 93.6 92.4 94.5 94.3 93.5
64 94.3 93.1 93.0 94.2 93.0 93.0 95.2 94.2 94.1
128 94.4 93.7 93.2 94.4 93.5 93.1 95.0 94.1 94.0
256 94.5 93.5 92.9 94.4 93.8 92.9 94.9 94.4 94.0
512 94.3 93.9 92.8 N.A. 93.8 92.8 N.A. 94.1 93.6

1024 94.5 93.9 92.4 N.A. N.A. 92.4 N.A. N.A. 93.1

Table 2. Recognition rates of the 2007 testing points of the USPS handwritten digit database
using the standard KPCA, proposed KPCA and MKPCA methods with polynomial kernel of
degree two through four.

When the noise level becomes infinitesimal, the component p.d.f. ϕ(ri; µ̂
(k)
i , Σ̂(k)

i ) in (20) is

singular. It, in probability 1, falls in the p-dimensional subspace span{Γ̂(k)
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where â(k) = (Γ̂(k)T
j Γ̂(k)

j )−1Γ̂(k)T
j (ri − µ̂
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As can be seen, by applying the KPCA mixture model, all the observations are softly divided
into g clusters each modelled by a local KPCA. We use the most appropriate local KPCA for
a given observation. Based on the probabilistic framework, a natural choice is to assign the
observation to the cluster belong to which its posterior probability is the largest.

5. Experiments

In this section, we will use both artificial and real data sets to compare the performance of the
proposed method with that of the standard KPCA (Schölkopf et al., 1998). In the first example,
we use toy data to visually compare the results by projecting testing points onto extracted
principal axes, and to show that the proposed method is superior to the standard KPCA in
terms of time and storage complexity. In the second example, we perform the experiment of
handwritten digital character recognition to further illustrate the effectiveness of the proposed
method. All these experiments are run with the settings of 3.06GHz CPU and 3.62GB RAM
using Matlab software.
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Fig. 1. From left to right, the first three kernel principal components extracted by the standard
KPCA (top), proposed KPCA (middle), and MKPCA method with g= 2 (bottom), respectively,
using the Gaussian kernel k(xi,xj) = exp(−‖xi − xj‖2/0.1). The feature values are illustrated
by shading and constant values are connected by contour lines.

5.1 Toy Example
The data are generated from four two-dimensional parabolic shape clusters that are verti-
cally and horizontally mirrored by the function y = x2 + ε, where x-values are uniformly
distributed within [−1, 1] and ε is Gaussian distributed noise having mean 0.6 and standard
deviation 0.1. We generate 500 data points for each parabolic shape, and use the Gaussian
kernel with σ2 = 0.05 through the experiment. The standard KPCA, proposed KPCA (by, in
this experiment, using the incomplete Cholesky decomposition followed by directly diagonal-
izing Cφ̃), and MKPCA methods are adopted to calculate the leading principal components of
the data set. In using the two proposed methods, we choose 233 linearly independent samples
from the entire 2000 samples, i.e., m = 233, during the incomplete Cholesky decomposition,
and set g = 2 for performing the MKPCA. Therefore, the proposed KPCA method consumes
much less time and storage space than that of the standard KPCA (to see table 1 for detailed
comparison). In Fig. 1, we depict the first three kernel principal components extracted by the
three methods. The features are indicated by shading and constant feature values are con-
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Fig. 2. Some digit images from the USPS database.

Methods for Size of matrix needed Training time Storage space
performing KPCA to be diagonalized (seconds) (M bytes)
Standard KPCA 5000 × 5000 6112 457
Proposed KPCA (d = 2) 371 × 371 114 41
Proposed KPCA (d = 3) 956 × 956 342 69
Proposed KPCA (d = 4) 1639 × 1639 634 118
MKPCA (d = 2) N.A. 321 68
MKPCA (d = 3) N.A. 901 115
MKPCA (d = 4) N.A. 2213 304

Table 3. Comparison of training time and storage space on the USPS handwritten digit
database with 5000 training points.

nected by contour lines. From Fig. 1, we see that the proposed KPCA method obtains almost
the same results with that of the standard KPCA method (ignoring the sign difference), and
both methods nicely separate the four clusters. For the data points, the average relative devi-
ation of the principal components found by the standard KPCA (by diagonalizing the kernel
matrix K) and by the proposed KPCA is less than 0.01. In this simple simulated experiment,
the toy data are compact in the feature space, and are well modelled by the KPCA method.
So, the MKPCA method doesn’t show its advantage; in fact, most of the toy data belong to
one component of the MKPCA model, since the estimated mixing proportions π̂1 = 0.9645
and π̂2 = 0.0355. As a result, the MKPCA method produces the similar result with that of the
KPCA method.

5.2 Handwritten Digit Character Recognition
In the second example, we consider the recognition problem of handwritten digital character.
The experiment is performed on the US Postal Service (USPS) handwritten digits database that
are collected from mail envelopes in Buffalo, New York. The database contains 7291 training
samples and 2007 testing samples for 10 numeral classes with dimensionality 256 (Schölkopf
et al., 1998). Some digit samples are shown in Fig. 2. With this database, 5000 training points

are chosen as training data and all the 2007 testing points are used as testing data. The polyno-
mial kernel with various degree d is utilized in each trial to compute the kernel function. We
employ the nearest neighbor classifier for classification role. In using MKPCA, we set g = 2. The
recognition rates obtained by the three approaches are reported in Table 2, while the training
times and storage spaces consumed are listed in Table 3. From Table 2, we see that the MKPCA
method achieves the best recognition rate among the three systems. The standard KPCA and
the proposed approach to performing KPCA have similar recognition rates. Nevertheless, the
proposed KPCA reduces the time and storage complexity significantly.

6. Conclusion

We have presented an improved algorithm for performing KPCA especially when the size of
training samples is large. This is achieved by viewing KPCA as a primal space problem with
the “samples” produced via the incomplete Cholesky decomposition. Since the spectrum
of the kernel matrix tends to decay rapidly, the incomplete Cholesky decomposition, as an
elegant low-rank approximation to the kernel matrix, arrives at sufficient accuracy. Compared
with the standard KPCA method, the proposed KPCA method reduces the time and storage
requirement significantly for the case of large scale data set.
In order to provide a locally linear model for the data projection onto a low dimensional
subspace, we extend KPCA to a mixture of local KPCA models by applying mixture model
of PCA in the primal space. MKPCA supplies an alternative choice to model data with large
variation. The mixture model outperforms the standard KPCA in terms of recognition rate.
The methodology introduced in this chaper could be applied to other kernel-based algorithms,
provided the algorithm could be expressed through dot products.
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In the second example, we consider the recognition problem of handwritten digital character.
The experiment is performed on the US Postal Service (USPS) handwritten digits database that
are collected from mail envelopes in Buffalo, New York. The database contains 7291 training
samples and 2007 testing samples for 10 numeral classes with dimensionality 256 (Schölkopf
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are chosen as training data and all the 2007 testing points are used as testing data. The polyno-
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employ the nearest neighbor classifier for classification role. In using MKPCA, we set g = 2. The
recognition rates obtained by the three approaches are reported in Table 2, while the training
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method achieves the best recognition rate among the three systems. The standard KPCA and
the proposed approach to performing KPCA have similar recognition rates. Nevertheless, the
proposed KPCA reduces the time and storage complexity significantly.

6. Conclusion

We have presented an improved algorithm for performing KPCA especially when the size of
training samples is large. This is achieved by viewing KPCA as a primal space problem with
the “samples” produced via the incomplete Cholesky decomposition. Since the spectrum
of the kernel matrix tends to decay rapidly, the incomplete Cholesky decomposition, as an
elegant low-rank approximation to the kernel matrix, arrives at sufficient accuracy. Compared
with the standard KPCA method, the proposed KPCA method reduces the time and storage
requirement significantly for the case of large scale data set.
In order to provide a locally linear model for the data projection onto a low dimensional
subspace, we extend KPCA to a mixture of local KPCA models by applying mixture model
of PCA in the primal space. MKPCA supplies an alternative choice to model data with large
variation. The mixture model outperforms the standard KPCA in terms of recognition rate.
The methodology introduced in this chaper could be applied to other kernel-based algorithms,
provided the algorithm could be expressed through dot products.
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Abstract
In various areas of numerical analysis, there are several possible algorithms for solving a prob-
lem. In such cases, each method potentially solves the problem, but the runtimes can widely
differ, and breakdown is possible. Also, there is typically no governing theory for finding
the best method, or the theory is in essence uncomputable. Thus, the choice of the optimal
method is in practice determined by experimentation and ‘numerical folklore’. However, a
more systematic approach is needed, for instance since such choices may need to be made in
a dynamic context such as a time-evolving system.
Thus we formulate this as a classification problem: assign each numerical problem to a class
corresponding to the best method for solving that problem.
What makes this an interesting problem for Machine Learning, is the large number of classes,
and their relationships. A method is a combination of (at least) a preconditioner and an itera-
tive scheme, making the total number of methods the product of these individual cardinalities.
Since this can be a very large number, we want to exploit this structure of the set of classes,
and find a way to classify the components of a method separately.
We have developed various techniques for such multi-stage recommendations, using auto-
matic recognition of super-clases. These techniques are shown to pay off very well in our
application area of iterative linear system solvers.
We present the basic concepts of our recommendation strategy, and give an overview of
the software libraries that make up the Salsa (Self-Adapting Large-scale Solver Architecture)
project.

1. Introduction

In various areas of numerical analysis, there are several possible algorithms for solving a prob-
lem. Examples are the various direct and iterative solvers for sparse linear systems, or rou-

*This work was funded in part by the Los Alamos Computer Science Institute through the subcontract
# R71700J- 29200099 from Rice University, and by the National Science Foundation under grants 0203984
and 0406403.
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tines for eigenvalue computation or numerical optimization. Typically, there is no governing
theory for finding the best method, or the theory is too expensive to compute. For instance,
in iterative linear system solving, there are many preconditioners and iterative schemes; the
convergence behaviour is determined by the decomposition of the right-hand side in terms of
the eigenvectors of the preconditioned operator. However, computing this spectrum is expen-
sive, in fact more expensive than solving the problem to begin with, and the dependency of
the iterative scheme on this decomposition is not known in explicit form.
Thus, the choice of the optimal method is in practice determined by experimentation and ‘nu-
merical folklore’. However, a more systematic approach is needed, for instance since such
choices may need to be made in a dynamic context such as a time-evolving system. Certain
recent efforts have tried to tackle this situation by the application of various automatic learn-
ing techniques Arnold et al. (2000); Bhowmick et al. (2006); Dongarra et al. (2006); Houstis
et al. (2000); Ramakrishnan & Ribbens (2000); Wilson et al. (2000). Such methods extract the
problem features, typically relying on a database of prior knowledge, in order to recommend
a suitable method. However, we may characterize this earlier research as either being too
general and lacking in specific implementations, or being too limited to one area, lacking the
conceptual necessary for generalization to other areas.
In this paper we present a theoretical framework for such recommender systems, as well as
libraries that we have developed that embody these concepts. Our framework is more gen-
eral than what has been studied before, in that we consider methods to be structured objects,
consisting of a composition of algorithms. Correspondingly, we describe strategies for rec-
ommending methods that acknowledge this structure, rather than considering methods to be
elements out of a flat set of elements.
In addition to the abstract mathematical description, we propose software interfaces imple-
menting the various entities in the framework. Some of this software has been realized in our
Salsa (Self-Adapting large-scale Solver Architecture) project; see Salsa Project (n.d.a;n).
We start by giving a brief introduction to our field in section 2, after which we formalize the
problem in sections 3 and 4. Section 5 has a general discussion of intelligent method selec-
tion, while section 6 details strategies for recommending composite method objects. Practical
experiments are reported in section 7.

2. Application: linear system solving

Many problems in engineering and in sciences such as physics, astronomy, climate modeling,
reduce to a few basic numerical problems:

• Linear system solving: given a square, nonsingular, matrix A and a vector f , find a
vector x such that Ax = f . Linear system solving also appears as a subproblem in
nonlinear systems and in time-dependent problems.

• Eigenvalue calculations: given a matrix A, find the pairs 〈u, λ〉 such that Au = λu.
Some eigenvalue calculations again lead to linear systems.

• Numerical optimization: find the vector x that maximizes a function f (x), often linear:
f (x) = atx, under certain constraints on x: g(x) = 0.

For each of these numerical problems, more than one solution algorithm exists, often without
a sufficient theory that allows for easy selection of the fastest or most accurate algorithm. This
can be witnessed in the NEOS server Czyzyk et al. (1996; 1998), where a user can choose from
various optimization algorithm, or the PETSc numerical toolkit Balay et al. (1999); Gropp &
Smith (n.d.) which allows the user to combine various predefined solver building blocks. The

aim is then to find an algorithm that will reliably solve the problem, and do so in the minimum
amount of time.

Since several algorithm candidates exist, without an analytic way of decid-
ing on the best algorithm in any given instance, we are looking at the classifi-
cation problem of using non-numerical techniques for recommending the best
algorithm for each particular problem instance.

In this chapter we will focus on linear system solving. The textbook algorithm, Gaussian
elimination, is reliable, but for large problems it may be too slow or require too much memory.
Instead, often one uses iterative solution methods, which are based on a principle of successive
approximation. Rather than computing a solution x directly, we compute a sequence n �→ xn
that we hope converges to the solution. (Typically, we have residuals rn that converge to zero,
rn ↓ 0, but this behaviour may not be monotone, so no decision method can be based on its
direct observation.)

2.1 Feature selection
As noted above, there is no simple, efficiently computable, way of deciding on the best al-
gorithm for solving a linear system. Theoretically it is known that the behaviour of iterative
solvers depends on the expansion of the right hand side in the eigenvector basis, but comput-
ing this expansion is far more expensive than solving the linear system to begin with. Also,
there are a few negative results Greenbaum & Strakos (1996) that stand in the way of easy
solutions.
However, using a statistical approach, we have no lack of features. For instance, we typically
are concerned with sparse matrices, that is, matrices for which only a few elements per row
are nonzero. Thus, we can introduce features that describe the sparsity structure of the ma-
trix. From a theoretical point of view, the sparsity structure is not relevant, but in practice, it
can correlate to meaningful features. For instance, high order finite element methods lead to
larger numbers of nonzeros per row, and are typically associated with large condition num-
bers, which are an indication of slow convergence. Thus, indirectly, we can correlate these
structural features with solver performance.

2.2 Multilevel decisions
As we remarked above, in essence we are faced with a classification problem: given a linear
system and its features, what is the best method for solving it. However, the set of classes, the
numerical methods, has structure to it that makes this a challenging problem.
It is a truism among numerical mathematicians that an iterative method as such is virtually
worthless; it needs to be coupled to a ‘preconditioner’: a transformation B of the linear sys-
tem that tames some of the adverse numerical properties. In its simplest form, applying a
preconditioner is equivalent to solving the equivalent system

Ãx = f̃ , where Ã = BA and f̃ = B f

or
Ãx̃ = f , where Ã = AB and x̃ = B−1x so x = Bx̃.

Since there are many choices for the preconditioner, we now have a set of classes of cardinality
the number of preconditioners times the number of iterative schemes.
Additionally, there are other transformations such as permutations Pt AP that can be applied
for considerations such as load balancing in parallel calculations. In all, we are faced with a
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tines for eigenvalue computation or numerical optimization. Typically, there is no governing
theory for finding the best method, or the theory is too expensive to compute. For instance,
in iterative linear system solving, there are many preconditioners and iterative schemes; the
convergence behaviour is determined by the decomposition of the right-hand side in terms of
the eigenvectors of the preconditioned operator. However, computing this spectrum is expen-
sive, in fact more expensive than solving the problem to begin with, and the dependency of
the iterative scheme on this decomposition is not known in explicit form.
Thus, the choice of the optimal method is in practice determined by experimentation and ‘nu-
merical folklore’. However, a more systematic approach is needed, for instance since such
choices may need to be made in a dynamic context such as a time-evolving system. Certain
recent efforts have tried to tackle this situation by the application of various automatic learn-
ing techniques Arnold et al. (2000); Bhowmick et al. (2006); Dongarra et al. (2006); Houstis
et al. (2000); Ramakrishnan & Ribbens (2000); Wilson et al. (2000). Such methods extract the
problem features, typically relying on a database of prior knowledge, in order to recommend
a suitable method. However, we may characterize this earlier research as either being too
general and lacking in specific implementations, or being too limited to one area, lacking the
conceptual necessary for generalization to other areas.
In this paper we present a theoretical framework for such recommender systems, as well as
libraries that we have developed that embody these concepts. Our framework is more gen-
eral than what has been studied before, in that we consider methods to be structured objects,
consisting of a composition of algorithms. Correspondingly, we describe strategies for rec-
ommending methods that acknowledge this structure, rather than considering methods to be
elements out of a flat set of elements.
In addition to the abstract mathematical description, we propose software interfaces imple-
menting the various entities in the framework. Some of this software has been realized in our
Salsa (Self-Adapting large-scale Solver Architecture) project; see Salsa Project (n.d.a;n).
We start by giving a brief introduction to our field in section 2, after which we formalize the
problem in sections 3 and 4. Section 5 has a general discussion of intelligent method selec-
tion, while section 6 details strategies for recommending composite method objects. Practical
experiments are reported in section 7.

2. Application: linear system solving

Many problems in engineering and in sciences such as physics, astronomy, climate modeling,
reduce to a few basic numerical problems:

• Linear system solving: given a square, nonsingular, matrix A and a vector f , find a
vector x such that Ax = f . Linear system solving also appears as a subproblem in
nonlinear systems and in time-dependent problems.

• Eigenvalue calculations: given a matrix A, find the pairs 〈u, λ〉 such that Au = λu.
Some eigenvalue calculations again lead to linear systems.

• Numerical optimization: find the vector x that maximizes a function f (x), often linear:
f (x) = atx, under certain constraints on x: g(x) = 0.

For each of these numerical problems, more than one solution algorithm exists, often without
a sufficient theory that allows for easy selection of the fastest or most accurate algorithm. This
can be witnessed in the NEOS server Czyzyk et al. (1996; 1998), where a user can choose from
various optimization algorithm, or the PETSc numerical toolkit Balay et al. (1999); Gropp &
Smith (n.d.) which allows the user to combine various predefined solver building blocks. The

aim is then to find an algorithm that will reliably solve the problem, and do so in the minimum
amount of time.

Since several algorithm candidates exist, without an analytic way of decid-
ing on the best algorithm in any given instance, we are looking at the classifi-
cation problem of using non-numerical techniques for recommending the best
algorithm for each particular problem instance.

In this chapter we will focus on linear system solving. The textbook algorithm, Gaussian
elimination, is reliable, but for large problems it may be too slow or require too much memory.
Instead, often one uses iterative solution methods, which are based on a principle of successive
approximation. Rather than computing a solution x directly, we compute a sequence n �→ xn
that we hope converges to the solution. (Typically, we have residuals rn that converge to zero,
rn ↓ 0, but this behaviour may not be monotone, so no decision method can be based on its
direct observation.)

2.1 Feature selection
As noted above, there is no simple, efficiently computable, way of deciding on the best al-
gorithm for solving a linear system. Theoretically it is known that the behaviour of iterative
solvers depends on the expansion of the right hand side in the eigenvector basis, but comput-
ing this expansion is far more expensive than solving the linear system to begin with. Also,
there are a few negative results Greenbaum & Strakos (1996) that stand in the way of easy
solutions.
However, using a statistical approach, we have no lack of features. For instance, we typically
are concerned with sparse matrices, that is, matrices for which only a few elements per row
are nonzero. Thus, we can introduce features that describe the sparsity structure of the ma-
trix. From a theoretical point of view, the sparsity structure is not relevant, but in practice, it
can correlate to meaningful features. For instance, high order finite element methods lead to
larger numbers of nonzeros per row, and are typically associated with large condition num-
bers, which are an indication of slow convergence. Thus, indirectly, we can correlate these
structural features with solver performance.

2.2 Multilevel decisions
As we remarked above, in essence we are faced with a classification problem: given a linear
system and its features, what is the best method for solving it. However, the set of classes, the
numerical methods, has structure to it that makes this a challenging problem.
It is a truism among numerical mathematicians that an iterative method as such is virtually
worthless; it needs to be coupled to a ‘preconditioner’: a transformation B of the linear sys-
tem that tames some of the adverse numerical properties. In its simplest form, applying a
preconditioner is equivalent to solving the equivalent system

Ãx = f̃ , where Ã = BA and f̃ = B f

or
Ãx̃ = f , where Ã = AB and x̃ = B−1x so x = Bx̃.

Since there are many choices for the preconditioner, we now have a set of classes of cardinality
the number of preconditioners times the number of iterative schemes.
Additionally, there are other transformations such as permutations Pt AP that can be applied
for considerations such as load balancing in parallel calculations. In all, we are faced with a
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large number of classes, but in a set that is the cartesian product of sets of individual decisions
that together make up the definition of a numerical method. Clearly, given this structure,
treating the set of classes as just a flat collection will be suboptimal. In this chapter we consider
the problem of coming up with better strategies, and evaluating their effectiveness.

2.3 Software aspects
The research reported in this paper has led to the development of a set of software libraries,
together called the SALSA project, for Self-Adapting Large-scale Solver Architecture. The
components here are

• Feature extraction. We have written a custom library, AnaMod, for Analysis Modules
for this.

• Storage of features and runtime results. During runtime we use our NMD, for Numeri-
cal MetaData, library. For permanent storage we are using a standard MySQL database.

• Learning. We use various Matlab toolboxes here, though ultimately we want to move
to an open source infrastructure.

• Process control. The overall testbed that controls feature extraction, decision making,
and execution of the chosen algorithms, is a custom library named SysPro, for System
preProcessors.

Since the overall goal is to optimize solution time, the feature extraction and process control
software need to be fast. Though we will not elaborate on this point, this means that we
occasionally have to trade accuracy for speed.

3. Formalization

In this section we formalize the notion of numerical problems and numerical methods for
solving problems. Our formalization will also immediately be reflected in the design of the
libraries that make up the Salsa project.

3.1 Numerical Problems and Solution Methods
The central problem of this paper, selecting the optimal algorith for a numerical problem,
implies that we have a specific problem context in mind. That can be linear system solving,
eigenvalue computations, numerical quadrature, et cetera. For each of these areas, there is a
definition of a numerical problem: in the case of linear systems, a problem will be a pair 〈A, b〉
of matrix and righthand side; for eigenvalue problems it denotes a matrix plus optionally an
interval for the eigenvalues, et cetera.
It would be pointless to capture this diversity of problems in a rigorous definition, so we will
use a leave the concept of ‘numerical problem’ largely undefined. We denote the space of
numerical problems by

A: the set of numerical problems in a class

where the exact definition of this will depend on the problem area.
The implementation of numerical problems is similarly domain-specific. As an example, we
give the following possible definition in the area of linear system solving: 1:

1 After this example we will tacitly omit the typedef line and only give the structure definition.

struct Problem_ {
LinearOperator A;
Vector RHS,KnownSolution,InitialGuess;
DesiredAccuracy constraint;

};
typedef struct Problem_* Problem;

Corresponding to the problem space, there is a result space

R = S × T: results, the space of solutions plus performance mea-
surements

(1)

containing computed solutions and performance measurements of the computing process.
The following is an illustration of results and performance measurements for the case of linear
system solving.

struct PerformanceMeasurement_ {
int success;
double Tsetup,Tsolve;
double *ConvergenceHistory;
double BackwardError,ForwardError;

}
struct Result_ {

Vector ComputedSolution;
PerformanceMeasurement performance;

}

Some component of the performance measurement, typically a timing measurement, will be
used to judge optimality of solution methods.
Having defined problems and results, we define the space of methods as the mappings from
problems to results.

M = {A �→ R}: the space of methods (potentially) solving the class of
numerical problems

We allow for methods to fail to compute the solution, for instance by the divergence of an
iterative method, or exceeding a set runtime limit. We formalize this by introducing a timing
function T(A, M), denoting the time that it takes method M to solve the problem A, where in
case of failure we set T(A, M) = ∞.
We will defer further discussion of the method space M for section 4.

3.2 Features and features extraction
As in natural in any Machine Learning context, we introduce the concept of problem features,
which will be the basis for any recommendation strategy.

F: the space of feature vectors of the numerical problems

and

Φ : A �→ F: a function that extracts features of numerical problems
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large number of classes, but in a set that is the cartesian product of sets of individual decisions
that together make up the definition of a numerical method. Clearly, given this structure,
treating the set of classes as just a flat collection will be suboptimal. In this chapter we consider
the problem of coming up with better strategies, and evaluating their effectiveness.

2.3 Software aspects
The research reported in this paper has led to the development of a set of software libraries,
together called the SALSA project, for Self-Adapting Large-scale Solver Architecture. The
components here are

• Feature extraction. We have written a custom library, AnaMod, for Analysis Modules
for this.

• Storage of features and runtime results. During runtime we use our NMD, for Numeri-
cal MetaData, library. For permanent storage we are using a standard MySQL database.

• Learning. We use various Matlab toolboxes here, though ultimately we want to move
to an open source infrastructure.

• Process control. The overall testbed that controls feature extraction, decision making,
and execution of the chosen algorithms, is a custom library named SysPro, for System
preProcessors.

Since the overall goal is to optimize solution time, the feature extraction and process control
software need to be fast. Though we will not elaborate on this point, this means that we
occasionally have to trade accuracy for speed.

3. Formalization

In this section we formalize the notion of numerical problems and numerical methods for
solving problems. Our formalization will also immediately be reflected in the design of the
libraries that make up the Salsa project.

3.1 Numerical Problems and Solution Methods
The central problem of this paper, selecting the optimal algorith for a numerical problem,
implies that we have a specific problem context in mind. That can be linear system solving,
eigenvalue computations, numerical quadrature, et cetera. For each of these areas, there is a
definition of a numerical problem: in the case of linear systems, a problem will be a pair 〈A, b〉
of matrix and righthand side; for eigenvalue problems it denotes a matrix plus optionally an
interval for the eigenvalues, et cetera.
It would be pointless to capture this diversity of problems in a rigorous definition, so we will
use a leave the concept of ‘numerical problem’ largely undefined. We denote the space of
numerical problems by

A: the set of numerical problems in a class

where the exact definition of this will depend on the problem area.
The implementation of numerical problems is similarly domain-specific. As an example, we
give the following possible definition in the area of linear system solving: 1:

1 After this example we will tacitly omit the typedef line and only give the structure definition.

struct Problem_ {
LinearOperator A;
Vector RHS,KnownSolution,InitialGuess;
DesiredAccuracy constraint;

};
typedef struct Problem_* Problem;

Corresponding to the problem space, there is a result space

R = S × T: results, the space of solutions plus performance mea-
surements

(1)

containing computed solutions and performance measurements of the computing process.
The following is an illustration of results and performance measurements for the case of linear
system solving.

struct PerformanceMeasurement_ {
int success;
double Tsetup,Tsolve;
double *ConvergenceHistory;
double BackwardError,ForwardError;

}
struct Result_ {

Vector ComputedSolution;
PerformanceMeasurement performance;

}

Some component of the performance measurement, typically a timing measurement, will be
used to judge optimality of solution methods.
Having defined problems and results, we define the space of methods as the mappings from
problems to results.

M = {A �→ R}: the space of methods (potentially) solving the class of
numerical problems

We allow for methods to fail to compute the solution, for instance by the divergence of an
iterative method, or exceeding a set runtime limit. We formalize this by introducing a timing
function T(A, M), denoting the time that it takes method M to solve the problem A, where in
case of failure we set T(A, M) = ∞.
We will defer further discussion of the method space M for section 4.

3.2 Features and features extraction
As in natural in any Machine Learning context, we introduce the concept of problem features,
which will be the basis for any recommendation strategy.

F: the space of feature vectors of the numerical problems

and

Φ : A �→ F: a function that extracts features of numerical problems
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where Φ(A) = x̄ ∈ F is the feature vector describing the numerical problem.
Feature space can be complicated in structure: elements of x̄ can be real numbers (for instance
matrix elements), positive real (norms), integer (quantities related to matrix size and sparsity
pattern), or elements of a finite set of choices. They can even be array-valued in any of these
types.
The NMD (Numerical MetaData) library Eijkhout & Fuentes (2007) provides an API for fea-
ture storage, including various utility functions.
We posit the existence of a parametrized function that can compute one feature at a time:

ComputeQuantity(Problem problem,
char *feature,ReturnValue *result,TruthValue *success);

Here, the ReturnValue type is a union of all returnable types, and the success parameter
indicates whether the quantity was actually computed. Computation can fail for any number
of reasons: if sequential software is called in parallel, if properties such as matrix bandwidth
are asked of an implicitly given operator, et cetera. Failure is not considered catastrophic, and
the calling code should allow for this eventuality.
For a general and modular setup, we do not hardwire the existence of any module. Instead,
we use a function

DeclareModule(char *feature,ReturnType type,
void(*module)(Problem,char*,ReturnValue*,TruthValue*));

to add individual feature computations to a runtime system.
The AnaMod (Analysis Modules) library Eijkhout & Fuentes (2007) implements the above
ideas, though in a slightly different form.

4. Numerical methods

In a simple-minded view, method space can be considered as a finite, unordered, collection
of methods {M1, . . . , Mk}, and in some applications this may even be the most appropriate
view. However, in the context of linear system solving a method is a more structured entity:
each method consists at least of the choice of a preconditioner and the choice of an iterative
scheme (QMR, GMRES, et cetera), both of which are independent of each other. Other possi-
ble components of a method are scaling of the system, and permutations for improved load
balancing. Thus we arrive at a picture of a number of preprocessing steps that transform the
original problem into another one with the same solution – or with a different solution that
can easily be transformed into that of the original problem – followed by a solver algorithm
that takes the transformed problem and yields its solution.
This section will formalize this further structure of the method space.

4.1 Formal definition
Above, we had defined M as the set of mappings A �→ R. We now split that as the prepro-
cessors

P = {A �→ A}: the set of all mappings from problems into problems

and the solvers2

2 In the context of linear system solving, these will be Krylov methods, hence the choice of the letter ‘K’.

K = {A �→ R}: the set of all solvers

To illustrate the fact that the preprocessing stages are really mappings A �→ A, consider
a right scaling D of a linear system, which maps the problem/solution tuple 〈A, b, x̄〉 to
〈AD, b, D−1x〉.
To model the fact that we have different kinds of preprocessors, we posit the existence of
subsets

Pi ⊂ P,

and we will assume that the identity mapping is contained in each. For instance, one Pi could
be the set of scalings of a linear system:

P4 = {′none′, ′left′, ′right′, ′symmetric′}

Other possibilities are permutations of the linear system, or approximations of the coeffient
matrix prior to forming the preconditioner.
Applying one preprocessor of each kind then gives us the definition of a method:

m ∈ M : m = k ◦ pn ◦ · · · ◦ p1, k ∈ K, pi ∈ Pi (2)

We leave open the possibility that certain preprocessors can be applied in any sequence (for
instance scaling and permuting a system commute), while for others different orderings are
allowed but not equivalent. Some preprocessors may need to be executed in a fixed location;
for instance, the computation of a preconditioner will usually come last in the sequence of
preprocessors.
Typically, a preprocessed problem has a different solution from the original problem, so each
preprocessor has a backtransformation operation, to be applied to the preprocessed solution.

4.2 Implementation
The set of system preprocessors, like that of the analysis modules above, has a two level struc-
ture. First, there is the preprocessor type; for instance ‘scaling’. Then there is the specific
choice within the type; for instance ‘’left scaling’. Additionally, but not discussed here, there
can be parameters associated with either the type or the specific choice; for instance, we can
scale by a block diagonal, with the parameter indicating the size of the diagonal blocks.
We implement the sequence of preprocessors by a recursive routine:

PreprocessedSolving
(char *method,Problem problem,Result *solution)

{
ApplyPreprocessor(problem,&preprocessed_problem);
if ( /* more preprocessors */ )
PreprocessedSolving(next_method,
preprocessed_problem,&preprocessed_solution);

else
Solve(final_method,
preprocessed_problem,&preprocessed_solution);

UnApplyPreprocessor(preprocessed_solution,solution);
}

The actual implementation is more complicated, but this pseudo-code conveys the essence.
We again adopt a modular approach where preprocessors are dynamically declared:
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where Φ(A) = x̄ ∈ F is the feature vector describing the numerical problem.
Feature space can be complicated in structure: elements of x̄ can be real numbers (for instance
matrix elements), positive real (norms), integer (quantities related to matrix size and sparsity
pattern), or elements of a finite set of choices. They can even be array-valued in any of these
types.
The NMD (Numerical MetaData) library Eijkhout & Fuentes (2007) provides an API for fea-
ture storage, including various utility functions.
We posit the existence of a parametrized function that can compute one feature at a time:

ComputeQuantity(Problem problem,
char *feature,ReturnValue *result,TruthValue *success);

Here, the ReturnValue type is a union of all returnable types, and the success parameter
indicates whether the quantity was actually computed. Computation can fail for any number
of reasons: if sequential software is called in parallel, if properties such as matrix bandwidth
are asked of an implicitly given operator, et cetera. Failure is not considered catastrophic, and
the calling code should allow for this eventuality.
For a general and modular setup, we do not hardwire the existence of any module. Instead,
we use a function

DeclareModule(char *feature,ReturnType type,
void(*module)(Problem,char*,ReturnValue*,TruthValue*));

to add individual feature computations to a runtime system.
The AnaMod (Analysis Modules) library Eijkhout & Fuentes (2007) implements the above
ideas, though in a slightly different form.

4. Numerical methods

In a simple-minded view, method space can be considered as a finite, unordered, collection
of methods {M1, . . . , Mk}, and in some applications this may even be the most appropriate
view. However, in the context of linear system solving a method is a more structured entity:
each method consists at least of the choice of a preconditioner and the choice of an iterative
scheme (QMR, GMRES, et cetera), both of which are independent of each other. Other possi-
ble components of a method are scaling of the system, and permutations for improved load
balancing. Thus we arrive at a picture of a number of preprocessing steps that transform the
original problem into another one with the same solution – or with a different solution that
can easily be transformed into that of the original problem – followed by a solver algorithm
that takes the transformed problem and yields its solution.
This section will formalize this further structure of the method space.

4.1 Formal definition
Above, we had defined M as the set of mappings A �→ R. We now split that as the prepro-
cessors

P = {A �→ A}: the set of all mappings from problems into problems

and the solvers2

2 In the context of linear system solving, these will be Krylov methods, hence the choice of the letter ‘K’.

K = {A �→ R}: the set of all solvers

To illustrate the fact that the preprocessing stages are really mappings A �→ A, consider
a right scaling D of a linear system, which maps the problem/solution tuple 〈A, b, x̄〉 to
〈AD, b, D−1x〉.
To model the fact that we have different kinds of preprocessors, we posit the existence of
subsets

Pi ⊂ P,

and we will assume that the identity mapping is contained in each. For instance, one Pi could
be the set of scalings of a linear system:

P4 = {′none′, ′left′, ′right′, ′symmetric′}

Other possibilities are permutations of the linear system, or approximations of the coeffient
matrix prior to forming the preconditioner.
Applying one preprocessor of each kind then gives us the definition of a method:

m ∈ M : m = k ◦ pn ◦ · · · ◦ p1, k ∈ K, pi ∈ Pi (2)

We leave open the possibility that certain preprocessors can be applied in any sequence (for
instance scaling and permuting a system commute), while for others different orderings are
allowed but not equivalent. Some preprocessors may need to be executed in a fixed location;
for instance, the computation of a preconditioner will usually come last in the sequence of
preprocessors.
Typically, a preprocessed problem has a different solution from the original problem, so each
preprocessor has a backtransformation operation, to be applied to the preprocessed solution.

4.2 Implementation
The set of system preprocessors, like that of the analysis modules above, has a two level struc-
ture. First, there is the preprocessor type; for instance ‘scaling’. Then there is the specific
choice within the type; for instance ‘’left scaling’. Additionally, but not discussed here, there
can be parameters associated with either the type or the specific choice; for instance, we can
scale by a block diagonal, with the parameter indicating the size of the diagonal blocks.
We implement the sequence of preprocessors by a recursive routine:

PreprocessedSolving
(char *method,Problem problem,Result *solution)

{
ApplyPreprocessor(problem,&preprocessed_problem);
if ( /* more preprocessors */ )
PreprocessedSolving(next_method,
preprocessed_problem,&preprocessed_solution);

else
Solve(final_method,
preprocessed_problem,&preprocessed_solution);

UnApplyPreprocessor(preprocessed_solution,solution);
}

The actual implementation is more complicated, but this pseudo-code conveys the essence.
We again adopt a modular approach where preprocessors are dynamically declared:
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DeclarePreprocessor(char *type,char *choice,
void(*preprocessor)(Problem,Problem*));

The SysPro (System Preprocessor) library provides a number of preprocessors, including the
forward and backward transformation of the systems. It also includes a framework for loop-
ing over the various choices of a preprocessor type, for instance for an exhaustive test.

5. Method selection

Our method selection problem can be formalized as of constructing a function

Π : A �→ M: the problem classification function

that maps a given problem to the optimal method. Including feature extraction, we can also
define

Π : F �→ M: the classification function in terms of features

We start with a brief discussion of precisely what is meant by ‘optimal’. After that, we will
refine the definition of Π to reflect the preprocessor/solver structure, and we will address the
actual construction of Π.

5.1 Different classification criteria
The simplest (non-constructive) definition of the method selection function Π is:

Π(A) = M ≡ ∀M′∈M : T(A, M) ≤ T(A, M′) (3)

Several variant definitions are possible. Often, we are already satisfied if we can construct a
function that picks a working method. For that criterium, we define Π non-uniquely as

Π′(A) = M where M is any method such that T(A, M) < ∞ (4)

Also, we usually do not insist on the absolutely fastest method: we can relax equation (3) to

Π(A) = M ≡ ∀M′∈M : T(A, M) ≤ (1 − ε)T(A, M′) (5)

which, for sufficient values of ε, also makes the definition non-unique. In both of the previous
cases we do not bother to define Π as a multi-valued function, but implicitly interpret Π(A) =
M to mean ‘M is one possible method satisfying the selection criterion’.
Formally, we define two classification types:

classification for reliability This is the problem equation (4) of finding any method that will
solve the problem, that is, that will not break down, stall, or diverge.

classification for performance This is the problem equation (3) of finding the fastest method
for a problem, possibly within a certain margin.

In a logical sense, the performance classification problem also solves the reliability problem.
In practice, however, classifiers are not infallible, so there is a danger that the performance
classifier will mispredict, not just by recommending a method that is slower than optimal, but
also by possibly recommending a diverging method. Therefore, in practice a combination of
these classifiers may be preferable.
We will now continue with discussing the practical construction of (the various guises of) the
selection function Π.

5.2 Examples
Let us consider some adaptive systems, and the shape that F, M, and Π take in them.

5.2.1 Atlas
Atlas Whaley et al. (2001) is a system that determines the optimal implementation of Blas
kernels such as matrix-matrix multiplication. One could say that the implementation chosen
by Atlas is independent of the inputs3 and only depends on the platform, which we will
consider a constant in this discussion. Essentially, this means that F is an empty space. The
number of dimensions of M is fairly low, consisting of algorithm parameters such unrolling,
blocking, and software pipelining parameters.
In this case, Π is a constant function defined by

Π( f ) ≡ min
M∈M

T(A, M)

where A is a representative problem. This minimum value can be found by a sequence of line
searches, as done in Atlas, or using other minimization techniques such a modified simplex
method Yi et al. (2004).

5.2.2 Scalapack/LFC
The distributed dense linear algebra library Scalapack Choi et al. (1992) gives in its manual a
formula for execution time as a function of problem size N, the number of processors Np, and
the block size Nb. This is an example of a two-dimensional feature space (N, Np), and a one-
dimensional method space: the choice of Nb. All dimensions range through positive integer
values. The function involves architectural parameters (speed, latency, bandwidth) that can
be fitted to observations.
Unfortunately, this story is too simple. The LFC software Roche & Dongarra (2002) takes
into account the fact that certain values of Np are disadvantageous, since they can only give
grids with bad aspect ratios. A prime number value of Np is a clear example, as this gives a
degenerate grid. In such a case it is often better to ignore one of the available processors and
use the remaining ones in a better shaped grid. This means that our method space becomes
two-dimensional with the addition of the actually used number of processors. This has a
complicated dependence on the number of available processors, and this dependence can
very well only be determined by exhaustive trials of all possibilities.

5.2.3 Collective communication
Collective operations in MPI Otto et al. (1995) can be optimized by various means. In work by
Vadhyar et al. Vadhiyar et al. (2000), the problem is characterized by the message size and the
number of processors, which makes F have dimension 2. The degrees of freedom in M are
the segment size in which messages will be subdivided, and the ‘virtual topology’ algorithm
to be used.
Assume for now that the method components can be set independently. The segment size
is then computed as s = Πs(m, p). If we have an a priori form for this function, for instance
Πs(m, p) = α + βm + γp, we can determine the parameters by a least squares fit to some
observations.
Suppose the virtual topology depends only on the message size m. Since for the virtual topol-
ogy there is only a finite number of choices, we only need to find the crossover points, which

3 There are some very minor caveats for special cases, such as small or ‘skinny’ matrices.
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DeclarePreprocessor(char *type,char *choice,
void(*preprocessor)(Problem,Problem*));

The SysPro (System Preprocessor) library provides a number of preprocessors, including the
forward and backward transformation of the systems. It also includes a framework for loop-
ing over the various choices of a preprocessor type, for instance for an exhaustive test.

5. Method selection

Our method selection problem can be formalized as of constructing a function

Π : A �→ M: the problem classification function

that maps a given problem to the optimal method. Including feature extraction, we can also
define

Π : F �→ M: the classification function in terms of features

We start with a brief discussion of precisely what is meant by ‘optimal’. After that, we will
refine the definition of Π to reflect the preprocessor/solver structure, and we will address the
actual construction of Π.

5.1 Different classification criteria
The simplest (non-constructive) definition of the method selection function Π is:

Π(A) = M ≡ ∀M′∈M : T(A, M) ≤ T(A, M′) (3)

Several variant definitions are possible. Often, we are already satisfied if we can construct a
function that picks a working method. For that criterium, we define Π non-uniquely as

Π′(A) = M where M is any method such that T(A, M) < ∞ (4)

Also, we usually do not insist on the absolutely fastest method: we can relax equation (3) to

Π(A) = M ≡ ∀M′∈M : T(A, M) ≤ (1 − ε)T(A, M′) (5)

which, for sufficient values of ε, also makes the definition non-unique. In both of the previous
cases we do not bother to define Π as a multi-valued function, but implicitly interpret Π(A) =
M to mean ‘M is one possible method satisfying the selection criterion’.
Formally, we define two classification types:

classification for reliability This is the problem equation (4) of finding any method that will
solve the problem, that is, that will not break down, stall, or diverge.

classification for performance This is the problem equation (3) of finding the fastest method
for a problem, possibly within a certain margin.

In a logical sense, the performance classification problem also solves the reliability problem.
In practice, however, classifiers are not infallible, so there is a danger that the performance
classifier will mispredict, not just by recommending a method that is slower than optimal, but
also by possibly recommending a diverging method. Therefore, in practice a combination of
these classifiers may be preferable.
We will now continue with discussing the practical construction of (the various guises of) the
selection function Π.

5.2 Examples
Let us consider some adaptive systems, and the shape that F, M, and Π take in them.

5.2.1 Atlas
Atlas Whaley et al. (2001) is a system that determines the optimal implementation of Blas
kernels such as matrix-matrix multiplication. One could say that the implementation chosen
by Atlas is independent of the inputs3 and only depends on the platform, which we will
consider a constant in this discussion. Essentially, this means that F is an empty space. The
number of dimensions of M is fairly low, consisting of algorithm parameters such unrolling,
blocking, and software pipelining parameters.
In this case, Π is a constant function defined by

Π( f ) ≡ min
M∈M

T(A, M)

where A is a representative problem. This minimum value can be found by a sequence of line
searches, as done in Atlas, or using other minimization techniques such a modified simplex
method Yi et al. (2004).

5.2.2 Scalapack/LFC
The distributed dense linear algebra library Scalapack Choi et al. (1992) gives in its manual a
formula for execution time as a function of problem size N, the number of processors Np, and
the block size Nb. This is an example of a two-dimensional feature space (N, Np), and a one-
dimensional method space: the choice of Nb. All dimensions range through positive integer
values. The function involves architectural parameters (speed, latency, bandwidth) that can
be fitted to observations.
Unfortunately, this story is too simple. The LFC software Roche & Dongarra (2002) takes
into account the fact that certain values of Np are disadvantageous, since they can only give
grids with bad aspect ratios. A prime number value of Np is a clear example, as this gives a
degenerate grid. In such a case it is often better to ignore one of the available processors and
use the remaining ones in a better shaped grid. This means that our method space becomes
two-dimensional with the addition of the actually used number of processors. This has a
complicated dependence on the number of available processors, and this dependence can
very well only be determined by exhaustive trials of all possibilities.

5.2.3 Collective communication
Collective operations in MPI Otto et al. (1995) can be optimized by various means. In work by
Vadhyar et al. Vadhiyar et al. (2000), the problem is characterized by the message size and the
number of processors, which makes F have dimension 2. The degrees of freedom in M are
the segment size in which messages will be subdivided, and the ‘virtual topology’ algorithm
to be used.
Assume for now that the method components can be set independently. The segment size
is then computed as s = Πs(m, p). If we have an a priori form for this function, for instance
Πs(m, p) = α + βm + γp, we can determine the parameters by a least squares fit to some
observations.
Suppose the virtual topology depends only on the message size m. Since for the virtual topol-
ogy there is only a finite number of choices, we only need to find the crossover points, which

3 There are some very minor caveats for special cases, such as small or ‘skinny’ matrices.
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can be done by bisection. If the topology depends on both m and p, we need to find the areas
in (m, p) space, which can again be done by some form of bisection.

5.3 Database
In our application we need to be explicit about the database on which the classification is
based. That issue is explored in this section.

5.3.1 General construction
The function Π is constructed from a database of performance results that results from solving
a set of problems A ⊂ A by each of a collection of methods M ⊂ M, each combination
yielding a result r ∈ R (equation (1)). Thus we store features of the problem, an identifier of
the method used, and the resulting performance measurement:

D ⊂ D = {F × M → T}: the database of features and performance results of
solved problems

We posit a mechanism (which differs per classifcation strategy) that constructs Π from a
database D. Where needed we will express the dependency of Π on the database explicitly
as ΠD . In the case of Bayesian classification the construction of Π from D takes a particularly
elegant form, which we will discuss next.

5.3.2 Bayesian classification; method suitability
In methods like Bayesian classification, we take an approach to constructing Π where we
characterize each method individually, and let Π be the function that picks the most suitable
one.
Starting with the database D as defined above, We note for each problem – and thus for each
feature vector – which method was the most successful:

D′ : F × M → {0, 1} defined by D′( f , m) = 1 ≡ m = arg min
m

D( f , m)

This allows us to draw up indicator functions for each method4:

B′ : M → pow(F) defined by f ∈ B′(m) ⇔ D′( f , m) = 1 (6)

These functions are generalized (multi-dimensional) histograms: for each method they plot
the feature (vector) values of sample problems for which this method is was found to be opti-
mal. However, since these functions are constructed from a set of experiments we have that,
most likely, ∪m∈MB′(m) � F. Therefore, it is not possible to define

Π( f ) = m ≡ f ∈ B′(m),

since for many values of f , the feature vector may not be in any B′(m). Conversely, it could
also be in B′(m) for several values of m, so the definition is not well posed.
Instead, we use a more general mechanism. First we define suitability functions:5

S = {F → [0, 1]}: the space of suitability measurements of feature vectors (7)

4 There is actually no objection to having D( f , m) return 1 for more than one method m; this allows us to
equivocate methods that are within a few percent of each other’s performance. Formally we do this by
extending and redefining the arg min function.

5 Please ignore the fact that the symbol S already had a meaning, higher up in this story.

This is to be interpreted as follows. For each numerical method there will be one func-
tion σ ∈ S, and σ( f ) = 0 means that the method is entirely unsuitable for problems with
feature vector f , while σ( f ) = 1 means that the method is eminently suitable.
We formally associate suitability functions with numerical methods:

B : M → S: the method suitability function (8)

and use the function B to define the selection function:

Π( f ) = arg max
m

B(m)( f ). (9)

Since elements of S are defined on the whole space F, this is a well-posed definition.
The remaining question is how to construct the suitability functions. For this we need con-
structor functions

C : P(F) → S: classifier constructor functions (10)

The mechanism of these can be any of a number of standard statistical techniques, such as
fitting a Gaussian distribution through the points in the subset ∪ f∈F f where F ∈ P(F).
Clearly, now B = C ◦ B′, and with the function B defined we can construct the selection
function Π as in equation (9).

5.4 Implementation of Bayesian classification
Strictly speaking, the above is a sufficient description of the construction and use of the Π
functions. However, as defined above, they use the entire feature vector of a problem, and
in practice a limited set of features may suffice for any given decision. This is clear in such
cases as when we want to impose “This method only works for symmetric problems”, where
clearly only a single feature is needed. Computing a full feature vector in this case would be
wasteful. Therefore, we introduce the notation FI where I ⊂ {1, . . . , k}. This corresponds to
the subspace of those vectors in F that are null in the dimensions not in I.
We will also assume that for each method m ∈ M there is a feature set Im that suffices to eval-
uate the suitability function B(m). Often, such a feature set will be common for all methods
in a set Pi of preprocessors. For instance, graph algorithms for fill-in reduction only need
structural information on the matrix.
Here is an example of the API (as used in the Salsa system) that defines and uses feature sets.
First we define a subset of features:

FeatureSet symmetry;
NewFeatureSet(&symmetry);
AddToFeatureSet(symmetry,

"simple","norm-of-symm-part",&sidx);
AddToFeatureSet(symmetry,

"simple","norm-of-asymm-part",&aidx);

After problem features have been computed, a suitability function for a specific method can
then obtain the feature values and use them:
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can be done by bisection. If the topology depends on both m and p, we need to find the areas
in (m, p) space, which can again be done by some form of bisection.

5.3 Database
In our application we need to be explicit about the database on which the classification is
based. That issue is explored in this section.

5.3.1 General construction
The function Π is constructed from a database of performance results that results from solving
a set of problems A ⊂ A by each of a collection of methods M ⊂ M, each combination
yielding a result r ∈ R (equation (1)). Thus we store features of the problem, an identifier of
the method used, and the resulting performance measurement:

D ⊂ D = {F × M → T}: the database of features and performance results of
solved problems

We posit a mechanism (which differs per classifcation strategy) that constructs Π from a
database D. Where needed we will express the dependency of Π on the database explicitly
as ΠD . In the case of Bayesian classification the construction of Π from D takes a particularly
elegant form, which we will discuss next.

5.3.2 Bayesian classification; method suitability
In methods like Bayesian classification, we take an approach to constructing Π where we
characterize each method individually, and let Π be the function that picks the most suitable
one.
Starting with the database D as defined above, We note for each problem – and thus for each
feature vector – which method was the most successful:

D′ : F × M → {0, 1} defined by D′( f , m) = 1 ≡ m = arg min
m

D( f , m)

This allows us to draw up indicator functions for each method4:

B′ : M → pow(F) defined by f ∈ B′(m) ⇔ D′( f , m) = 1 (6)

These functions are generalized (multi-dimensional) histograms: for each method they plot
the feature (vector) values of sample problems for which this method is was found to be opti-
mal. However, since these functions are constructed from a set of experiments we have that,
most likely, ∪m∈MB′(m) � F. Therefore, it is not possible to define

Π( f ) = m ≡ f ∈ B′(m),

since for many values of f , the feature vector may not be in any B′(m). Conversely, it could
also be in B′(m) for several values of m, so the definition is not well posed.
Instead, we use a more general mechanism. First we define suitability functions:5

S = {F → [0, 1]}: the space of suitability measurements of feature vectors (7)

4 There is actually no objection to having D( f , m) return 1 for more than one method m; this allows us to
equivocate methods that are within a few percent of each other’s performance. Formally we do this by
extending and redefining the arg min function.

5 Please ignore the fact that the symbol S already had a meaning, higher up in this story.

This is to be interpreted as follows. For each numerical method there will be one func-
tion σ ∈ S, and σ( f ) = 0 means that the method is entirely unsuitable for problems with
feature vector f , while σ( f ) = 1 means that the method is eminently suitable.
We formally associate suitability functions with numerical methods:

B : M → S: the method suitability function (8)

and use the function B to define the selection function:

Π( f ) = arg max
m

B(m)( f ). (9)

Since elements of S are defined on the whole space F, this is a well-posed definition.
The remaining question is how to construct the suitability functions. For this we need con-
structor functions

C : P(F) → S: classifier constructor functions (10)

The mechanism of these can be any of a number of standard statistical techniques, such as
fitting a Gaussian distribution through the points in the subset ∪ f∈F f where F ∈ P(F).
Clearly, now B = C ◦ B′, and with the function B defined we can construct the selection
function Π as in equation (9).

5.4 Implementation of Bayesian classification
Strictly speaking, the above is a sufficient description of the construction and use of the Π
functions. However, as defined above, they use the entire feature vector of a problem, and
in practice a limited set of features may suffice for any given decision. This is clear in such
cases as when we want to impose “This method only works for symmetric problems”, where
clearly only a single feature is needed. Computing a full feature vector in this case would be
wasteful. Therefore, we introduce the notation FI where I ⊂ {1, . . . , k}. This corresponds to
the subspace of those vectors in F that are null in the dimensions not in I.
We will also assume that for each method m ∈ M there is a feature set Im that suffices to eval-
uate the suitability function B(m). Often, such a feature set will be common for all methods
in a set Pi of preprocessors. For instance, graph algorithms for fill-in reduction only need
structural information on the matrix.
Here is an example of the API (as used in the Salsa system) that defines and uses feature sets.
First we define a subset of features:

FeatureSet symmetry;
NewFeatureSet(&symmetry);
AddToFeatureSet(symmetry,

"simple","norm-of-symm-part",&sidx);
AddToFeatureSet(symmetry,

"simple","norm-of-asymm-part",&aidx);

After problem features have been computed, a suitability function for a specific method can
then obtain the feature values and use them:
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FeatureSet symmetry; // created above
FeatureValues values;
NewFeatureValues(&values);
InstantiateFeatureSet(problem,symmetry,values);
GetFeatureValue(values,sidx,&sn,&f1);
GetFeatureValue(values,aidx,&an,&f2);
if (f1 && f2 && an.r>1.e-12*sn.r)

printf("problem too unsymmetric\n");

6. Classification of composite methods

In section 4 we showed how, in our application area of linear system solving, the space of
methods has a structure where a method is a composite of a sequence of preprocessing steps
and a concluding solver; equation equation (2). Accordingly, our recommendation function Π
will be a composite:

Π = 〈Πk, {Πi}i∈P〉.
In the previous section, we posited a general mechanism (which we described in detail for
methods like Bayesian classification) of deriving ΠD from a database D ⊂ {F × M → T}.
In this section we will consider ways of defining databases DK,DP and attendant functions
ΠK , ΠP, and of combining these into an overall recommendation function.
For simplicity of exposition, we restrict our composites to a combination of one preprocessor
(in practice, the preconditioner), and one solver (the iterative method); that is M = P × K.
At first we consider the performance problem, where we recommend a method that will mini-
mize solution time (refer to section 5.1 for a definition of the two types of classification). Then,
in section 6.4 we consider the reliability problem of recommending a method that will con-
verge, no matter the solution time.

6.1 Combined recommendation
In this strategy, we ignore the fact that a method is a product of constituents, and we simply
enumerate the elements of M. Our function Π is then based on the database

D = {
〈

f , 〈p, k〉, t
〉
| ∃a∈A : t = T(p, k, a)}

and the recommendation function is a straightforward mapping Πcombined( f ) = 〈p, k〉.
For Bayesian classification we get for each 〈p, k〉 ∈ M the class

Cp,k = {A ∈ A : T(p, k, A) is minimal}

and corresponding function σp,k. We can then define

Πcombined( f ) = arg max
p,k

σp,k( f )

The main disadvantage to this approach is that, with a large number of methods to choose
from, some of the classes can be rather small, leading to insufficient data for an accurate clas-
sification.
In an alternative derivation of this approach, we consider the Cp,k to be classes of preproces-
sors, but conditional upon the choice of a solver. We then recommend p and k, not as a pair

but sequential: we first find the k for which the best p can be found:

Πconditional =

{
let k := arg maxk maxp σp,k( f )
return 〈arg maxp σp,k( f ), k〉

However, this is equivalent to the above combined approach.

6.2 Orthogonal recommendation
In this strategy we construct separate functions for recommending elements of P and K, and
we put together their results.
We define two derived databases that associate a solution time with a feature vector and a
preprocessor or solver separately, even though strictly speaking both are needed to solve a
problem and thereby produce a solution time. For solvers:

DK =

{
〈 f , k, t〉 | k ∈ K, ∃a∈A : f = φ(a), t = min

p∈P
T(p, k, a)

}

and for preprocessors:

DP =

{
〈 f , p, t〉 | p ∈ P, ∃a∈A : f = φ(a), t = min

k∈K
T(p, k, a)

}
.

From these, we derive the functions ΠK , ΠP and we define

Πorthogonal( f ) = 〈ΠP( f ), ΠK( f )〉

In Bayesian classification, the classes here are

Ck = {A : minp T(p, k, A) is minimal over all k}

and
Cp = {A : mink T(p, k, A) is minimal over all p},

giving functions σp, σk. (Instead of classifying by minimum over the other method component,
we could also use the average value.) The recommendation function is then

Πorthogonal( f ) = 〈arg max
p

σp( f ), arg max
k

σk( f )〉

6.3 Sequential recommendation
In the sequential strategy, we first recommend an element of P, use that to transform the
system, and recommend an element of K based on the transformed features.
Formally, we derive ΠP as above from the derived database

DP =

{
〈 f , p, t〉 | p ∈ P, ∃a∈A : f = φ(a), t = min

k∈K
T(p, k, a)

}
.

but ΠK comes from the database of all preprocessed problems:

DK = ∪p∈PDK,p,
DK,p = {〈 f , k, t〉 | k ∈ K, ∃a∈A : f = φ(p(a)), t = T(p, k, a)}
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FeatureSet symmetry; // created above
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In the previous section, we posited a general mechanism (which we described in detail for
methods like Bayesian classification) of deriving ΠD from a database D ⊂ {F × M → T}.
In this section we will consider ways of defining databases DK,DP and attendant functions
ΠK , ΠP, and of combining these into an overall recommendation function.
For simplicity of exposition, we restrict our composites to a combination of one preprocessor
(in practice, the preconditioner), and one solver (the iterative method); that is M = P × K.
At first we consider the performance problem, where we recommend a method that will mini-
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in section 6.4 we consider the reliability problem of recommending a method that will con-
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and corresponding function σp,k. We can then define

Πcombined( f ) = arg max
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The main disadvantage to this approach is that, with a large number of methods to choose
from, some of the classes can be rather small, leading to insufficient data for an accurate clas-
sification.
In an alternative derivation of this approach, we consider the Cp,k to be classes of preproces-
sors, but conditional upon the choice of a solver. We then recommend p and k, not as a pair

but sequential: we first find the k for which the best p can be found:

Πconditional =

{
let k := arg maxk maxp σp,k( f )
return 〈arg maxp σp,k( f ), k〉

However, this is equivalent to the above combined approach.

6.2 Orthogonal recommendation
In this strategy we construct separate functions for recommending elements of P and K, and
we put together their results.
We define two derived databases that associate a solution time with a feature vector and a
preprocessor or solver separately, even though strictly speaking both are needed to solve a
problem and thereby produce a solution time. For solvers:
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{
〈 f , k, t〉 | k ∈ K, ∃a∈A : f = φ(a), t = min
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{
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}
.

From these, we derive the functions ΠK , ΠP and we define

Πorthogonal( f ) = 〈ΠP( f ), ΠK( f )〉

In Bayesian classification, the classes here are

Ck = {A : minp T(p, k, A) is minimal over all k}

and
Cp = {A : mink T(p, k, A) is minimal over all p},

giving functions σp, σk. (Instead of classifying by minimum over the other method component,
we could also use the average value.) The recommendation function is then

Πorthogonal( f ) = 〈arg max
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σp( f ), arg max
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6.3 Sequential recommendation
In the sequential strategy, we first recommend an element of P, use that to transform the
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Formally, we derive ΠP as above from the derived database
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which gives us a single function ΠP and individual functions ΠK,p. This gives us

Πsequential( f ) = 〈let p :=ΠP( f ), k :=ΠK(p( f )) or ΠK,p(p( f ))〉

For Bayesian classification, we define the classes Cp as above:

Cp = {A : mink T(p, k, A) is minimal over all p},

but we have to express that Ck contains preconditioned features:

Ck = {A ∈
⋃
p

p(A) : T(p, k, A) is minimal, where p is such that A ∈ p(A)}

Now we can define

Πsequential( f ) = 〈let p := arg maxp σp( f ), k := arg max
k

σk(p( f ))〉

This approach to classification is potentially the most accurate, since both the preconditioner
and iterator recommendation are made based on the features of the actual problem they apply
to. This also means that this approach is the most expensive; both the combined and the or-
thogonal approach require only the features of the original problem. In practice, with a larger
number of preprocessors, one can combine these approaches. For instance, if a preprocessor
such as scaling can be classified based on some easy to compute features, it can be tackled
sequentially, while the preconditioner and iterator are then recommended with the combined
approach based on a full feature computation of the scaled problem.

6.4 The reliability problem
In the reliability problem we classify problems by whether a method converges on them or
not. The above approaches can not be used directly in this case, for several reasons.

• The above approaches are based on assigning each problem to a single classes based on
minimum solution time. In the reliability problem each problem would be assigned to
multiple classes, since typically more than one method would converge on the problem.
The resulting overlapping classes would lead to a low quality of recommendation.

• The sequential and orthogonal approaches would run into the additional problem that,
given a preconditioner, there is usually at least one iterative method that gives a con-
verging combination. Separate recommendation of the preconditioner is therefore im-
possible.

Instead, we take a slightly different approach. For each method m we define a function Π(m) :
F �→ {0, 1} which states whether the method will converge given a feature vector of a prob-
lem. We can then define

Π( f ) = a random element of {m : Π(m)( f ) = 1}

For Bayesian classification, we can adopt the following strategy. For each M ∈ M, define the
set of problems on which it converges:

CM = {A : T(M, A) < ∞}

and let C̄M be its complement:

C̄M = {A : T(M, A) = ∞}.

Now we construct functions σM, σ̄M based on both these sets. This gives a recommendation
function:

Π( f ) = {M : σM( f ) > σ̄M( f )}
This function is multi-valued, so we can either pick an arbitrary element from Π( f ), or the
element for which the excess σM( f )− σ̄M( f ) is maximized.
The above strategies give only a fairly weak recommendation from the point of optimizing
solve time. Rather than using reliability classification on its own, we can use it as a preliminary
step before the performance classification.

7. Experiments

In this section we will report on the use of the techniques developed above, applied to the
problem of recommending a preconditioner and iterative method for solving a linear system.
The discussion on the experimental setup and results will be brief; results with much greater
detail can be found in Fuentes (2007).
We start by introducing some further concepts that facilitate the numerical tests.

7.1 Experimental setup
We use a combination of released software from the Salsa project Salsa Project (n.d.a;n) and
custom scripts. For feature computation we use AnaMod Eijkhout & Fuentes (2007); The Salsa
Project (n.d.); storage and analysis of features and timings is done with MySQL and custom
scripting in Matlab and its statistical toolbox.
The AnaMod package can compute 45 features, in various categories, such as structural fea-
tures, norm-like features, measures of the spectrum and of the departure from normality. The
latter two are obviously approximated rather than computed exactly.
The Salsa testbed gives us access to the iterative methods and preconditioners of the Petsc
package. including the preconditioners of externally interfaced packages such as Hypre Fal-
gout et al. (2006); Lawrence Livermore Lab, CASC group (n.d.).

7.2 Practical issues
The ideas developed in the previous sections are sufficient in principle for setting up a prac-
tical application of machine learning to numerical method selection. However, in practice we
need some auxiliary mechanisms to deal with various ramifications of the fact that our set of
test problems is not of infinite size. Thus, we need

• A way of dealing with features that can be invariant or (close to) dependent in the test
problem collection.

• A way of dealing with methods that can be very close in their behaviour.

• An evaluation of the accuracy of the classifiers we develop.

7.2.1 Feature analysis
There are various transformations we apply to problem features before using them in various
learning methods.
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which gives us a single function ΠP and individual functions ΠK,p. This gives us
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to. This also means that this approach is the most expensive; both the combined and the or-
thogonal approach require only the features of the original problem. In practice, with a larger
number of preprocessors, one can combine these approaches. For instance, if a preprocessor
such as scaling can be classified based on some easy to compute features, it can be tackled
sequentially, while the preconditioner and iterator are then recommended with the combined
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not. The above approaches can not be used directly in this case, for several reasons.

• The above approaches are based on assigning each problem to a single classes based on
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multiple classes, since typically more than one method would converge on the problem.
The resulting overlapping classes would lead to a low quality of recommendation.

• The sequential and orthogonal approaches would run into the additional problem that,
given a preconditioner, there is usually at least one iterative method that gives a con-
verging combination. Separate recommendation of the preconditioner is therefore im-
possible.

Instead, we take a slightly different approach. For each method m we define a function Π(m) :
F �→ {0, 1} which states whether the method will converge given a feature vector of a prob-
lem. We can then define

Π( f ) = a random element of {m : Π(m)( f ) = 1}

For Bayesian classification, we can adopt the following strategy. For each M ∈ M, define the
set of problems on which it converges:

CM = {A : T(M, A) < ∞}

and let C̄M be its complement:

C̄M = {A : T(M, A) = ∞}.

Now we construct functions σM, σ̄M based on both these sets. This gives a recommendation
function:

Π( f ) = {M : σM( f ) > σ̄M( f )}
This function is multi-valued, so we can either pick an arbitrary element from Π( f ), or the
element for which the excess σM( f )− σ̄M( f ) is maximized.
The above strategies give only a fairly weak recommendation from the point of optimizing
solve time. Rather than using reliability classification on its own, we can use it as a preliminary
step before the performance classification.

7. Experiments

In this section we will report on the use of the techniques developed above, applied to the
problem of recommending a preconditioner and iterative method for solving a linear system.
The discussion on the experimental setup and results will be brief; results with much greater
detail can be found in Fuentes (2007).
We start by introducing some further concepts that facilitate the numerical tests.

7.1 Experimental setup
We use a combination of released software from the Salsa project Salsa Project (n.d.a;n) and
custom scripts. For feature computation we use AnaMod Eijkhout & Fuentes (2007); The Salsa
Project (n.d.); storage and analysis of features and timings is done with MySQL and custom
scripting in Matlab and its statistical toolbox.
The AnaMod package can compute 45 features, in various categories, such as structural fea-
tures, norm-like features, measures of the spectrum and of the departure from normality. The
latter two are obviously approximated rather than computed exactly.
The Salsa testbed gives us access to the iterative methods and preconditioners of the Petsc
package. including the preconditioners of externally interfaced packages such as Hypre Fal-
gout et al. (2006); Lawrence Livermore Lab, CASC group (n.d.).

7.2 Practical issues
The ideas developed in the previous sections are sufficient in principle for setting up a prac-
tical application of machine learning to numerical method selection. However, in practice we
need some auxiliary mechanisms to deal with various ramifications of the fact that our set of
test problems is not of infinite size. Thus, we need

• A way of dealing with features that can be invariant or (close to) dependent in the test
problem collection.

• A way of dealing with methods that can be very close in their behaviour.

• An evaluation of the accuracy of the classifiers we develop.

7.2.1 Feature analysis
There are various transformations we apply to problem features before using them in various
learning methods.
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Scaling Certain transformations on a test problem can affect the problem features, without
affecting the behaviour of methods, or being of relevance for the method choice. For
instance, scaling a linear system by a scalar factor does not influence the convergence
behaviour of iterative solvers. Also, features can differ in magnitude by order of mag-
nitude. For this reason, we normalize features, for instance scaling them by the largest
diagonal element. We also mean-center features for classification methods that require
this.

Elimination Depending on the collection of test problems, a feature may be invariant, or
dependent on other features. We apply Principal Component Analysis Jackson (2003)
to the set of features, and use that to weed out irrelevant features.

7.2.2 Hierarchical classification
It is quite conceivable that certain algorithms are very close in behaviour. It then makes sense
to group these methods together and first construct a classifier that can recommend first such
a group, and subsequently a member of the group. This has the advantage that the classifiers
are build from a larger number of observations, giving a higher reliability.
The algorithm classes are built by computing the independence of methods. For two algo-
rithms x and y, the ‘independence of method x from method y’ is defined as

Iy(x) =
#cases where x works and y not

#cases where x works

The quantity Iy(x) ∈ [0, 1] describes how much x succeeds on different problems from y. Note
that Iy(x) �= Ix(y) in general; if x works for every problem where y works (but not the other
way around), then Iy(x) = 0, and Ix(y) > 0.

7.2.3 Evaluation
In order to evaluate a classifier, we use the concept of accuracy. The accuracy α of a classifier
is defined as

α =
#problems correctly classified

total #problems

A further level of information can be obtained looking at the details of misclassification:
a ‘confusion matrix’ is defined as A = (αij) where αij is the ratio of problems belonging in
class i, classified in class j, to those belonging in class i. With this, αii is the accuracy of classi-
fier i, so, for an ideal classifier, A is a diagonal matrix with a diagonal ≡ 1; imperfect classifiers
have more weight off the diagonal.
A further measure of experimental results is the confidence interval z, which indicates an
interval in which the resulting accuracy for a random trial will be away for the presented
average accuracy α by ±z Douglas & Montgomery (1999) of the time. We use z to delimit the
confidence interval since we have used the Z-test Douglas & Montgomery (1999), commonly
used in statistics. The confidence interval is a measure of how ‘stable’ the resulting accuracy
is for an experiment.

7.3 Numerical test
We tested a number of iterative methods and preconditioners on a body of test matrices, col-
lected from Matrix Market and a few test applications. The iterative methods and precondi-
tioners are from the PETSc library.
As described above, we introduced superclasses, as follows:

• B={ bcgs, bcgsl, bicg }, where bcgs is BiCGstab van der Vorst (1992), and bcgsl is
BiCGstab(�) Sleijpen et al. (n.d.) with � ≥ 2.

• G={ gmres, fgmres } where fgmres is the ‘flexible’ variant of GMRES Saad (1993).

• T={ tfqmr }

• C={ cgne }, conjugate gradients on the noral equations.

for iterative methods and

• A = { asm, rasm, bjacobi }, where asm is the Additive Schwarz method, and rasm is its
restricted variant Cai & Sarkis (1999); bjacobi is block-jacobi with a local ILU solve.

• BP = { boomeramg, parasails, pilut }; these are three preconditioners from the hypre pack-
age Falgout et al. (2006); Lawrence Livermore Lab, CASC group (n.d.)

• I = { ilu, silu }, where silu is an ILU preconditioner with shift Manteuffel (1980).

for preconditioners.

(a) Iterative Methods

ksp α ± z
bcgsl 0.59±0.02
bcgs 0.71±0.03
bicg 0.68±0.06
fgmres 0.80±0.02
gmres 0.59±0.04
lgmres 0.81±0.03
tfqmr 0.61±0.05

(b) Preconditioners

pc α ± z
asm 0.72±0.05
bjacobi 0.11±0.11
boomeramg 0.71±0.06
ilu 0.66±0.02
parasails 0.46±0.12
pilut 0.80±0.06
rasm 0.70±0.04
silu 0.83±0.02

Table 1. Accuracy of classification using one class per available method

(a) Iterative methods

Super Class α Compound

B 0.95
bcgs 0.93 0.87
bcgsl 0.92 0.87
bicg 0.89 0.84

G 0.98
fgmres 0.96 0.94
gmres 0.91 0.89
lgmres 0.94 0.93

T 0.91
tfqmr − 0.91

(b) Preconditioners

Super Class α Compound

A 0.95
asm 0.98 0.93

bjacobi 0.67 0.64
rasm 0.82 0.78

BP 0.99
boomeramg 0.80 0.80

parasails 0.78 0.77
pilut 0.97 0.96

I 0.94
ilu 0.82 0.75
silu 0.97 0.91

Table 2. Hierarchical classification results



Machine Learning for Multi-stage Selection of Numerical Methods 133

Scaling Certain transformations on a test problem can affect the problem features, without
affecting the behaviour of methods, or being of relevance for the method choice. For
instance, scaling a linear system by a scalar factor does not influence the convergence
behaviour of iterative solvers. Also, features can differ in magnitude by order of mag-
nitude. For this reason, we normalize features, for instance scaling them by the largest
diagonal element. We also mean-center features for classification methods that require
this.
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lected from Matrix Market and a few test applications. The iterative methods and precondi-
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As described above, we introduced superclasses, as follows:
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BiCGstab(�) Sleijpen et al. (n.d.) with � ≥ 2.

• G={ gmres, fgmres } where fgmres is the ‘flexible’ variant of GMRES Saad (1993).

• T={ tfqmr }

• C={ cgne }, conjugate gradients on the noral equations.

for iterative methods and

• A = { asm, rasm, bjacobi }, where asm is the Additive Schwarz method, and rasm is its
restricted variant Cai & Sarkis (1999); bjacobi is block-jacobi with a local ILU solve.

• BP = { boomeramg, parasails, pilut }; these are three preconditioners from the hypre pack-
age Falgout et al. (2006); Lawrence Livermore Lab, CASC group (n.d.)
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strategy average std.dev.
combined .3 .15

orthogonal .78 .04
Table 3. Average and standard deviation of the correct classification rate

In table 1 we report the accuracy (as defined above) for a classification of all individual meth-
ods, while table 2 gives the result using superclasses. Clearly, classification using superclasses
is superior. All classifiers were based on decision trees Breiman et al. (1983); Dunham (2002).

Fig. 1. Confusion matrix for combined approach for classifying (pc, ksp).

Finally, in figures 1, 2 we give confusion matrices for two different classification strategies for
the preconditioner / iterative method combination. The orthogonal approach gives superior
results, as evinced by the lesser weight off the diagonal. For this approach, there are fewer
classes to build classifiers for, so the modeling is more accurate. As a quantative measure of
the confusion matrices, we report in table 3 the average and standard deviation of the fraction
of correctly classified matrices.

7.4 Reliability and Performance
Above (section 5.1) we defined the Performance recommendation problem of finding the
fastest method, and the Reliability recommendation problem of finding one that works at
all. Since orthogonal recommendation is not possible for the reliability problem (section 6.4),
we use combined recommendation there. In our tests, this strategy turns out to recommend a
subset of the actually converging methods, so it is indeed a valuable preprocessing step.
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8. Conclusion

We have defined the relevant concepts for the use of machine learning for algorithm selection
in various areas of numerical analysis, in particular iterative linear system solving. An innova-
tive aspect of our approach is the multi-leveled approach to the set of objects (the algorithms)
to be classified. An important example of levels is the distinction between the iterative process
and the preconditioner in iterative linear system solvers. We have defined various strategies
for classifying subsequent levels. A numerical test testifies to the feasibility of using machine
learning to begin with, as well as the necessity for our multi-leveled approach.
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1. Introduction    

Reinforcement learning (Sutton & Barto, 1998; Watkins & Dayan, 1998; Grefenstette, 1988; 
Miyazaki et al., 1999; Miyazaki et al., 1999) among machine learning techniques is an 
indispensable approach to realize the intelligent agent such as autonomous mobile robots. 
The importance of the technique is discussed in several literatures. However there exist a lot 
of problems compared with the other learning techniques such as Neural Networks in order 
to apply reinforcement learning to actual applications. One of the main problems of 
reinforcement learning application of actual sized problem is “curse of dimensionality” 
problem in partition of multi-inputs sensory states. High dimension of input leads to huge 
number of rules in the reinforcement learning application. It should be avoided maintaining 
computational efficiency for actual applications. Multi-agent problem such as the pursuit 
problem (Benda et al., 1985; Ito & Kanabuchi, 2001) is typical difficult problem for 
reinforcement learning computation in terms of huge dimensionality. As the other related 
problem, learning of complex task is not easy essentially because the reinforcement learning 
is based only upon rewards derived from the environment. 
In order to deal with these problems, several effective approaches are studied. For relaxation 
of task complexity, several types of hierarchical reinforcement learning have been proposed 
to apply actual applications (Takahashi & Asada, 1999; Morimoto & Doya, 2000). To avoid 
the curse of dimensionality, there exists modular hierarchical learning (Ono & Fukumoto, 
1996; Fujita & Matsuno, 2005) that construct the learning model as the combination of 
subspaces. Adaptive segmentation (Murano & Kitamura, 1997; Hamagami et al.,2003) for 
constructing the learning model validly corresponding to the environment is also studied. 
However more effective technique of different approach is also necessary in order to apply 
reinforcement learning to actual sized problems. 
In this chapter, I focus on the well-known pursuit problem and propose a hierarchical 
modular reinforcement learning that Profit Sharing learning algorithm is combined with Q 
Learning reinforcement learning algorithm hierarchically in multi-agent environment. As 
the model structure for such huge problem, I propose a modular fuzzy model extending 
SIRMs architecture (Seki et al., 2006; Yubazaki et al., 1997). Through numerical experiments, 
I show the effectiveness of the proposed algorithm compared with the conventional 
algorithms. 

9
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The chapter is organized as follows. In section 2, an overview of pursuit problem as multi-
agent environment is presented. In section 3, I propose construction of agent model and 
essential learning algorithms of a hierarchical reinforcement learning using a modular 
model architecture. In section 4, I propose a modular fuzzy model for agent model 
construction. The results of numerical experiments are shown in section 5. Finally, 
conclusions are drawn in section 6. 

2. Pursuit problem as multi-agent environment 

The pursuit problem is well known and has been studied as typical benchmark problem in 
Distributed Artificial Intelligence research field (Benda et al., 1985). It is multi-agent based 
problem that hunter agents act collaboratively to capture prey agent. Figure 1 shows the 4-
agent pursuit problem in 77 grids field. In the problem, all agent behave in turn to move 
upward, downward, rightward, leftward in one gird, or to stay. Collision of the agents is 
prohibited because one grid allows only one agent to stay. The objective of the simulation is 
to surround the prey agent by the hunter agents as shown in Fig.2.  
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Fig. 1. 4-Pursuit Problem(7x7 grids) 
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Fig. 2. Examples of Capturing Condition in Pursuit Problem 

The hunter agents can utilize walls for surrounding as well as surrounding by whole hunter 
agents. When the surrounding is successfully performed, related hunter agents receive 

reward from the environment to carry out reinforcement learning. As for behavior of the 
prey agent, it behaves to run away from the nearest hunter agent for playing a fugitive role. 
For actual computer simulations or mobile robot applications, it is indispensable to avoid 
huge memory consumption for the state space, i.e. “curse of dimensionality”, and to 
improve slow learning speed caused by its sparsity(e.g. acquired Q-value through 
reinforcement learning). In this study, I focus on the 4-agent pursuit problem to improve 
precision and efficiency of reinforcement learning in multi-agent environment and to 
demonstrate settlement of “curse of dimensionality”. 
For simulation study, I adopt “soft-max” strategy for selecting the action of the hunter 
agents. The conditional probability based on Boltzmman distribution for action selection is 
as follows: 
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where Tt is temperature at t-th iteration, s is state vector, a is the action of the agent, β is the 
parameter for temperature cooling(0<β<1), w denotes evaluation value for state-and-action 
pair, and N denotes the set of all alternative action at the state s. Owing to this mechanism, 
the hunter agent act like random walk(exploring) with high temperature value in the early 
simulation trials and act definitely based on acquired evaluation values in the later 
simulation trials according to the lowered temperature value. 

3. A hierarchical reinforcement learning using modular model architecture 

3.1 Basic concepts 
There exist two problems to solve the pursuit problem efficiently. One is huge memory 
consumption for internal knowledge expression of the agents expressed as evaluation 
weights corresponding to the pair of state-and-action caused by the grid size of the 
environment and the number of hunter agents. In order to restrain the increase of required 
memory for the agents, modular structure is applied for expression of the agent knowledge 
base. The other is complex objective, i.e. surrounding the prey collaboratively. In general, it is 
effective for dealing with such complex task to decompose into sub-tasks. Then I decompose 
the task into hierarchical sub-tasks to fulfill reinforcement learning effectively. I propose a 
hierarchical modular reinforcement learning to solve the above described two problems in 
the multi-agent pursuit simulation.  

3.2 Hierarchical task decomposition for agent learning 
It is difficult to decide how many kinds of subtask should be decomposed into. In this study, 
I empirically decompose the surrounding task(capturing) into “decision of move position 
target” for surrounding according to current monitored state and “selection of appropriate 
action” to move to the target position of each agent. The latter task is native, isolated from 
the other hunter agents, and is not needed to be collaborative such as position control of the 
single agent. In other words, the task is decomposed into “surrounding” task synchronized 
with the other hunter agents and “exploring the environment” task. Moreover, the upper 
task corresponds only to collaborative surrounding strategy. Figure 3 shows the internal 
hierarchical structure of the hunter agent. The knowledge base of the agent is composed of 
the “Rules in Upper Layer” and the “Rules in Lower Layer” as shown in the figure. It is 
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where Tt is temperature at t-th iteration, s is state vector, a is the action of the agent, β is the 
parameter for temperature cooling(0<β<1), w denotes evaluation value for state-and-action 
pair, and N denotes the set of all alternative action at the state s. Owing to this mechanism, 
the hunter agent act like random walk(exploring) with high temperature value in the early 
simulation trials and act definitely based on acquired evaluation values in the later 
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3.1 Basic concepts 
There exist two problems to solve the pursuit problem efficiently. One is huge memory 
consumption for internal knowledge expression of the agents expressed as evaluation 
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environment and the number of hunter agents. In order to restrain the increase of required 
memory for the agents, modular structure is applied for expression of the agent knowledge 
base. The other is complex objective, i.e. surrounding the prey collaboratively. In general, it is 
effective for dealing with such complex task to decompose into sub-tasks. Then I decompose 
the task into hierarchical sub-tasks to fulfill reinforcement learning effectively. I propose a 
hierarchical modular reinforcement learning to solve the above described two problems in 
the multi-agent pursuit simulation.  

3.2 Hierarchical task decomposition for agent learning 
It is difficult to decide how many kinds of subtask should be decomposed into. In this study, 
I empirically decompose the surrounding task(capturing) into “decision of move position 
target” for surrounding according to current monitored state and “selection of appropriate 
action” to move to the target position of each agent. The latter task is native, isolated from 
the other hunter agents, and is not needed to be collaborative such as position control of the 
single agent. In other words, the task is decomposed into “surrounding” task synchronized 
with the other hunter agents and “exploring the environment” task. Moreover, the upper 
task corresponds only to collaborative surrounding strategy. Figure 3 shows the internal 
hierarchical structure of the hunter agent. The knowledge base of the agent is composed of 
the “Rules in Upper Layer” and the “Rules in Lower Layer” as shown in the figure. It is 
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important to keep learning capability as well as task decomposition. According to the two-
layered decomposition, rules in the lower layer can be adapted corresponding to the agent 
behavior in every step as Markov Decision Process, as shown in Fig.4. 
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Fig. 3. Internal Hierarchical Structure of Hunter Agent 
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Fig. 4. Conceptual Diagram of Hierarchical Task Decomposition 

3.3 A modular profit sharing learning for upper layer 
In the upper layer, the target position of the agent is decided based on observed state such 
as the current position of the prey agent and the other hunter agents. The rules in the upper 
layer express goodness of the target position corresponding to the current state excluding 
actual actions. In order to construct the rules based on the current state combination, huge 
corresponding memory is needed. To avoid such requirement, the authors applied modular 
structure for the rule expression (Takahashi & Watanabe, 2006) in the upper layer as shown 
in Fig.5. In this section, the dimension of modular model is assumed to be three for 

explanation simplicity. Higher dimension can also be considered as the same manner. 
Original state space of each agent is expressed as the modular model by covering with three 
subspaces of oneself-and-another pair as shown in Fig.6. 
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Fig. 5. Modular Structure of Agent State Maps 

 
Fig. 6. An Example of Modular Structured Maps 

The weights of rules in the upper layer are updated by Profit Sharing learning 
algorithm(Miyazaki et al., 1999), when capturing succeeds, as the following formulations: 
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The weights of rules in the upper layer are updated by Profit Sharing learning 
algorithm(Miyazaki et al., 1999), when capturing succeeds, as the following formulations: 
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where u is the weight of the rule, g is state of the prey agent, he,i denotes the state of agent e 
at i step ago from the current step, k denotes the reinforcement function, and   is the 
parameter. 
In the action phase, the target position is desirable to be decided as a sub-goal for 
surrounding task instead of final goal corresponding to the current state of the prey agent 
according to the rule weights. In this study, the target position of the agent is generated as: 

 
 , , ,

arg max ( , 1)
e

q

q h
v

u e g h
p q e






 
     (3) 

where he denotes the current position of the agent, v denotes candidate of the target position, 
q denotes the other agent, and μ is the parameter. Due to these state selections, the target 
position as valid sub-goal is generated and sent to the lower layer. 

3.4 Q-learning for lower layer 
In the lower layer, appropriate selection of concrete action to reach the target position 
decided at the upper layer should be fulfilled through reinforcement learning process. It 
should be noted that states of the other hunter agents are unnecessary for the lower task. 
The input state of the rule consists of the target position and the current own position. At 
every step in learning trial, the learning of the lower layer is employed because we can 
interpret every agent movement as the movement to current position considered as the 
movement to virtual targeted position according to another viewpoint. In the lower layer, 
Q-Learning (Sutton & Barto, 1998; Watkins & Dayan, 1988) can be applied successfully 
because the process is typical Markov Decision Process. Q-Learning is realized as: 
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where Q is Q-value, se,t is the state vector of the agent e at t-th step, ae,t is action of the agent e 
at t-th step, c denotes the state for updating, r denotes the reward, and α, γ are parameters. It 
should be noted that the current state of the agent moved from the other position always 
receive rewards considered as the virtual targeted state, internally. 

4. A modular fuzzy model 

4.1 Model structure 
As a fuzzy model having high applicability, Single Input Rule Modules(SIRMs) (Seki et al., 
2006; Yubazaki et al., 1997) was proposed. The idea is to unify reasoning outputs from fuzzy 
rule modules comprised with single input formed fuzzy if-then rules. The number of rules 
can be drastically reduced as well as bringing us high maintainability in actual application. 
However, its disadvantage of low precision is inevitable in order to apply the method to 

huge multi-dimensional problems. I extend the SIRMs method by relaxing the restriction of 
the input space, i.e. single, to arbitrary subspace of the rule. 
I propose a “Modular Fuzzy Model”, for constructing the model of huge multi-dimensional 
space. Description of the model is as follows: 
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where “Rules-i” stands for the i-th fuzzy rule module, Pi(x) denotes predetermined 
projection of the input vector x in i-th module, yi is the output variable, and n is the number 
of rule modules. The number of constituent rules in the i-th fuzzy rule module is mi. f is the 
function of consequent part of the rule like TSK-fuzzy model (Takagi & Sugeno, 1985). i

jA  

denotes the fuzzy sets defined in the projected space. 
The membership degree of the antecedent part of j-th rule in “Rules-i” module is calculated 
as: 

 0( ( ))i i
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where h denotes the membership degree and x0 is an input vector. The output of fuzzy 
reasoning of each module is decided as the following equation. 
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The final output of the “Modular Fuzzy Model” is formulated as: 
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where wi denotes the parameter of importance of the i-th rule module. The parameter can be 
also formulated as the output of rule based system like modular neural network structure 
(Auda & Kamel, 1999). Figure 7 shows the structure of Modular Fuzzy Model. 
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where u is the weight of the rule, g is state of the prey agent, he,i denotes the state of agent e 
at i step ago from the current step, k denotes the reinforcement function, and   is the 
parameter. 
In the action phase, the target position is desirable to be decided as a sub-goal for 
surrounding task instead of final goal corresponding to the current state of the prey agent 
according to the rule weights. In this study, the target position of the agent is generated as: 
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where he denotes the current position of the agent, v denotes candidate of the target position, 
q denotes the other agent, and μ is the parameter. Due to these state selections, the target 
position as valid sub-goal is generated and sent to the lower layer. 

3.4 Q-learning for lower layer 
In the lower layer, appropriate selection of concrete action to reach the target position 
decided at the upper layer should be fulfilled through reinforcement learning process. It 
should be noted that states of the other hunter agents are unnecessary for the lower task. 
The input state of the rule consists of the target position and the current own position. At 
every step in learning trial, the learning of the lower layer is employed because we can 
interpret every agent movement as the movement to current position considered as the 
movement to virtual targeted position according to another viewpoint. In the lower layer, 
Q-Learning (Sutton & Barto, 1998; Watkins & Dayan, 1988) can be applied successfully 
because the process is typical Markov Decision Process. Q-Learning is realized as: 
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where Q is Q-value, se,t is the state vector of the agent e at t-th step, ae,t is action of the agent e 
at t-th step, c denotes the state for updating, r denotes the reward, and α, γ are parameters. It 
should be noted that the current state of the agent moved from the other position always 
receive rewards considered as the virtual targeted state, internally. 

4. A modular fuzzy model 

4.1 Model structure 
As a fuzzy model having high applicability, Single Input Rule Modules(SIRMs) (Seki et al., 
2006; Yubazaki et al., 1997) was proposed. The idea is to unify reasoning outputs from fuzzy 
rule modules comprised with single input formed fuzzy if-then rules. The number of rules 
can be drastically reduced as well as bringing us high maintainability in actual application. 
However, its disadvantage of low precision is inevitable in order to apply the method to 

huge multi-dimensional problems. I extend the SIRMs method by relaxing the restriction of 
the input space, i.e. single, to arbitrary subspace of the rule. 
I propose a “Modular Fuzzy Model”, for constructing the model of huge multi-dimensional 
space. Description of the model is as follows: 
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where “Rules-i” stands for the i-th fuzzy rule module, Pi(x) denotes predetermined 
projection of the input vector x in i-th module, yi is the output variable, and n is the number 
of rule modules. The number of constituent rules in the i-th fuzzy rule module is mi. f is the 
function of consequent part of the rule like TSK-fuzzy model (Takagi & Sugeno, 1985). i
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denotes the fuzzy sets defined in the projected space. 
The membership degree of the antecedent part of j-th rule in “Rules-i” module is calculated 
as: 
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where h denotes the membership degree and x0 is an input vector. The output of fuzzy 
reasoning of each module is decided as the following equation. 
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The final output of the “Modular Fuzzy Model” is formulated as: 
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where wi denotes the parameter of importance of the i-th rule module. The parameter can be 
also formulated as the output of rule based system like modular neural network structure 
(Auda & Kamel, 1999). Figure 7 shows the structure of Modular Fuzzy Model. 
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Fig. 7. Modular Fuzzy Model 

4.2 Application of modular fuzzy model for upper layer 
I tackle to the “curse of dimensionality” in the multi-agent pursuit problem using above 
proposed modular fuzzy model method. The objective of this study is to restrain memory 
consumption of rules in reinforcement learning keeping its performance. In this study, the 
function of consequent part in Eq.(5) is defined as parameter of “real value”, i.e. simplified 
fuzzy reasoning model (Ichihashi & Watanabe, 1990), in order for applying to the pursuit 
problem as: 
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The importance parameter in Eq.(8) is set as 1.0 in this study. Instead of “crisp type” 
modular model described in section 3.3, I apply the modular fuzzy model to the upper layer 
model in the hierarchical reinforcement learning for pursuit problem. In addition to the 
usual crisp partition of the agent position as shown in Fig.8, fuzzy sets of the position are 
defined as shown in Fig.9. The antecedent fuzzy sets are defined by Cartesian products of 
each fuzzy set on the state of the agent position.  
 

Membership Functions of 
Horizontal Position

0.0

1.0

M
em

be
rs

hi
p 

Fu
nc

tio
ns

 o
f 

V
er

tic
al

 P
os

iti
on

1.
0

0.
0

V1
V2

V3
V4

V5

H1 H2 H3 H4 H5

5x5 = 25 partitions

Membership Functions of 
Horizontal Position

0.0

1.0

M
em

be
rs

hi
p 

Fu
nc

tio
ns

 o
f 

V
er

tic
al

 P
os

iti
on

1.
0

0.
0

V1
V2

V3
V4

V5

H1 H2 H3 H4 H5

Membership Functions of 
Horizontal Position

0.0

1.0

M
em

be
rs

hi
p 

Fu
nc

tio
ns

 o
f 

V
er

tic
al

 P
os

iti
on

1.
0

0.
0

V1
V2

V3
V4

V5

H1 H2 H3 H4 H5

5x5 = 25 partitions  
Fig. 8. Usual Crisp Partition of Agent Position 

u in Eq.(2) is calculated by the modular fuzzy model and is learned considering the 
membership degree of the rules by the profit sharing algorithm. In this study, I assume that 
the number of fuzzy sets and parameters in the premise part is decided in advance. The 
parameters of real value in the consequent part are learned by the profit-sharing algorithm. 
The parameters are modified as: 
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where k denotes the reinforcement function in Eq.(2). The denominator in Eq.(10) can be 
omitted in actual processing because its value is always 1.0 from the definition of fuzzy sets 
described above. 
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4.2 Application of modular fuzzy model for upper layer 
I tackle to the “curse of dimensionality” in the multi-agent pursuit problem using above 
proposed modular fuzzy model method. The objective of this study is to restrain memory 
consumption of rules in reinforcement learning keeping its performance. In this study, the 
function of consequent part in Eq.(5) is defined as parameter of “real value”, i.e. simplified 
fuzzy reasoning model (Ichihashi & Watanabe, 1990), in order for applying to the pursuit 
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The importance parameter in Eq.(8) is set as 1.0 in this study. Instead of “crisp type” 
modular model described in section 3.3, I apply the modular fuzzy model to the upper layer 
model in the hierarchical reinforcement learning for pursuit problem. In addition to the 
usual crisp partition of the agent position as shown in Fig.8, fuzzy sets of the position are 
defined as shown in Fig.9. The antecedent fuzzy sets are defined by Cartesian products of 
each fuzzy set on the state of the agent position.  
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u in Eq.(2) is calculated by the modular fuzzy model and is learned considering the 
membership degree of the rules by the profit sharing algorithm. In this study, I assume that 
the number of fuzzy sets and parameters in the premise part is decided in advance. The 
parameters of real value in the consequent part are learned by the profit-sharing algorithm. 
The parameters are modified as: 
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where k denotes the reinforcement function in Eq.(2). The denominator in Eq.(10) can be 
omitted in actual processing because its value is always 1.0 from the definition of fuzzy sets 
described above. 
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Fig. 10. Initial Placement of the Agents in 5x5 environment 

5. Numerical experiments 

5.1 Results compared with conventional learning methods 
In the pursuit problem, the performance of the proposed hierarchical modular 
reinforcement learning method is compared with conventional methods through computer 
simulations. The size of the pursuit problem is 5x5. The absolute coordinate of the agent 
position is used in the experiments. The reason why relative coordinate is not used in the 
experiments is to evaluate essential performance of the proposed algorithm in terms of 
precision of learning, learning speed, and the memory consumption. As basic simulation 
conditions, each agent cannot communicate each other but can monitor the position of the 
other agents. The rule of the prey agent behavior is set as random behavior because the 
random behavior theoretically involves every action strategies. The initial placement of the 
prey agent and the hunter agents is shown in Fig.10. 
The proposed methods are compared with the simple Q-Learning algorithm in order to 
evaluate basic performance of the methods. In the experiments, it is assumed that the Q-
Learning agent(not hierarchically structured) can only utilize the position of the prey agent 
in addition to own position. The Q-Learning agent decides the action by calculating Q-value 
defined as Q(g, se, ae) from the sensed position of the prey agent and own position, where se 
is the position of the agent e, ae is the corresponding action of the agent e, and g is the 
position of the prey agent. 
As for hierarchical modular reinforcement learning agents, three methods are simulated. 
The expressions of the upper layer are different, though their hierarchical structures and the 
lower layer driven by Q-Learning are the same. The first method is structured as the 
complete expressed upper layer. From all positions of the hunter agents and the prey agent, 
the target position to move is decided. The number of rules in upper layer is 
25*25*25*25*25=9,765,625. The second method is “crisp” modular model for upper layer. 
The number of rules in upper layer of each agent is (25*25*25*25)*3= 1,171,875. The last 
method is the modular fuzzy model for upper layer. Detailed constructions of the model are 
described in next subsection. For example, the 1st agent of the modular fuzzy model for 
upper layer is constructed as: 
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Fig. 11. Simulation Results 

where g is the position of the prey agent, h is the position of the hunter agent, and b is the 
parameter of consequent part of the fuzzy rule. The fuzzy set A is constructed by 
combining the crisp sets of own agent position and prey agent position with the fuzzy sets 
of the other two hunter agent positions defined by partitioning the grid into 33 as shown 
in Fig.9. The number of rules in upper layer is much smaller than the others, i.e. 
(25*25*9*9)*3=151,875. 
I perform the simulation 20 times for each method. The number of trials in the simulation 
are 20,000. The results are shown in Fig.11. The depicted data is averaged value of 20 series 
after averaging each sequential 100 trials. The results by the modular fuzzy model(depicted 
as ModFuzzy) show the best performance compared with the other methods. Both the 
learning speed and the precision of learning are desirable. Furthermore required memory 
amount is much smaller than the other methods. The results by “crisp” modular 
model(depicted as CrispMod) show also good performance. The complete expression 
model(depicted as NonMod) cannot acquire rules efficiently and the performance is 
deteriorated over time. This seems to be caused by the sparsity of model expression. The 
simple Q-Learning agent (NonH-Q) is not so bad unexpectedly in the small 55 grid world. 
The strategy only to approach to the prey agent acquired by the simple non-hierarchical Q-
Learning might be reasonable in such small world. However, as the knowlede about 
surrounding task cannot be learned at all in such model expression, successful surrounding 
completely depends upon accidental behavior of the prey agent.  

5.2 Detailed results by proposed model 
In order to construct the modular fuzzy model, the important issue is to decide the 
dimension of projection in rule modules. Furthermore the number of partition should be 
also decided appropriately. In the pursuit problem, as the positions of own agent and the 
prey agent are indispensable by nature, the issue is restricted to decide the number of the 
other hunter agents included in model expression and the number of partition, i.e. crisp or 
fuzzy. In this study, the projection is extended step by step through modeling(reinforcement 
learning) from one other hunter agent added. The number of partition for each position is 
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upper layer is constructed as: 
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Fig. 11. Simulation Results 

where g is the position of the prey agent, h is the position of the hunter agent, and b is the 
parameter of consequent part of the fuzzy rule. The fuzzy set A is constructed by 
combining the crisp sets of own agent position and prey agent position with the fuzzy sets 
of the other two hunter agent positions defined by partitioning the grid into 33 as shown 
in Fig.9. The number of rules in upper layer is much smaller than the others, i.e. 
(25*25*9*9)*3=151,875. 
I perform the simulation 20 times for each method. The number of trials in the simulation 
are 20,000. The results are shown in Fig.11. The depicted data is averaged value of 20 series 
after averaging each sequential 100 trials. The results by the modular fuzzy model(depicted 
as ModFuzzy) show the best performance compared with the other methods. Both the 
learning speed and the precision of learning are desirable. Furthermore required memory 
amount is much smaller than the other methods. The results by “crisp” modular 
model(depicted as CrispMod) show also good performance. The complete expression 
model(depicted as NonMod) cannot acquire rules efficiently and the performance is 
deteriorated over time. This seems to be caused by the sparsity of model expression. The 
simple Q-Learning agent (NonH-Q) is not so bad unexpectedly in the small 55 grid world. 
The strategy only to approach to the prey agent acquired by the simple non-hierarchical Q-
Learning might be reasonable in such small world. However, as the knowlede about 
surrounding task cannot be learned at all in such model expression, successful surrounding 
completely depends upon accidental behavior of the prey agent.  

5.2 Detailed results by proposed model 
In order to construct the modular fuzzy model, the important issue is to decide the 
dimension of projection in rule modules. Furthermore the number of partition should be 
also decided appropriately. In the pursuit problem, as the positions of own agent and the 
prey agent are indispensable by nature, the issue is restricted to decide the number of the 
other hunter agents included in model expression and the number of partition, i.e. crisp or 
fuzzy. In this study, the projection is extended step by step through modeling(reinforcement 
learning) from one other hunter agent added. The number of partition for each position is 
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changed as well as the dimension. The results are summarized in Table 1. In this Table, 
averaged value, standard deviation, and standard error of episode lengh average of last 100 
trials in 20 times simulation are shown as well as the number of partition and the number of  
 

Notes of Model ID:   m5533x       
The number of partition: Target, Own, Other1, Other 2, Other3

m : modular fuzzy model       3 : fuzzy partition 
c  : crisp modular model      5 : crisp partition
u  : usual memory type        x : void ( not used in model)

Target Own Other1 Other2 Other3 Average Standard Deviation Standard Error
m333xx 9 9 9 2,187 225.77 310.71 69.48
m533xx 25 9 9 6,075 142.76 68.08 15.22
m335xx 9 9 25 6,075 98.27 44.75 10.01
m353xx 9 25 9 6,075 8.25 1.70 0.38
m535xx 25 9 25 16,875 121.99 85.53 19.12
m553xx 25 25 9 16,875 5.97 0.50 0.11
m355xx 9 25 25 16,875 10.94 1.06 0.24
c555xx 25 25 25 46,875 11.30 22.20 4.96
m3355x 9 9 25 25 151,875 115.76 33.90 6.92
m5533x 25 25 9 9 151,875 5.81 0.33 0.07
c5555x 25 25 25 25 1,171,875 9.07 0.67 0.14
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Fig. 12. Comparison of Modular Fuzzy Model and Crisp Modular Model 

rules corresponding to the model. From the results of first four models, own position of the 
agent might be partitioned by crisp sets, i.e. m353xx. From further results of next four 
models, own position of the agent and position of the target, i.e. prey agent, might be 
partitioned by crisp sets, i.e. m553xx. From these obserbations, the model construction is 
heuristically performed as shown in the last four results in the Table. From the results 
m5533x model has best performance among the models. Compared results with good 

model(c5555x) are shown in Fig.12. The significance of the m5533x model performance 
compared with the other good model performance is also investigated by the t test. The 
result compared with m553xx model is that null hypothesis, i.e. the means do not differ, is 
rejected with statistical significance level of 0.01. As the results compared with the other 
model are obvious, the description is omitted.  
The results by the proposed model are considered that the learned agent can perform 
surroundig task within six times movement against almost all behavior pattern of the prey 
agent. This level cannot be attained without collaborative behavior of the learned agent. In 
addition to its drastically improved learning speed, it can be said that the precision level of 
learning is sufficient compared with the conventional techniques. 

6. Conclusion 

In this chapter, I focused on the pursuit problem and proposed a hierarchical modular 
reinforcement learning that Profit Sharing learning algorithm is combined with Q Learning 
reinforcement learning algorithm hierarchically in multi-agent environment. As the model 
structure for such huge problem, I proposed a modular fuzzy model extending SIRMs 
architecture. Through numerical experiments, I showed the effectiveness of the proposed 
algorithm compared with the conventional algorithms. My future plan concerning with the 
proposed methods includes application of another multi-agent problem or complex task 
problem. 
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addition to its drastically improved learning speed, it can be said that the precision level of 
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reinforcement learning that Profit Sharing learning algorithm is combined with Q Learning 
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1. Introduction

Combining multiple classifiers (e.g., decision trees) to build an ensemble is an advanced ma-
chine learning technique with substantially improvement over single-based classifiers. Ran-
dom forests (RFs) (1), a representative decision tree-based ensemble has been emerged as a
principle machine learning tool combining properties of efficient classifier and feature selec-
tion model running on general-purpose processor (GPP-based) custom-hardware and opti-
mized operating systems. Rather than minimizing training error, RF minimizes the general-
ization error, while being fast to train, proven not to overfit, and computationally effective,
(O(

√
VTlogT), where V is the number of variables and T is the number of observations).

These merits make RF a potential tool suited for adaptive classification problems. RF has
been applied to vision problems such as object recognition (2–7). It has also been used for
OCR (8) and for key point recognition (9). Despite of the appearance success of RF virtually
no work has been done to map from its ideal mathematical model to compact and reliable
hardware design.
In this chapter we present object recognition system implemented on a field programmable
gate array (FPGA), enables learning algorithm to scale up. Fig.1 shows the general architec-
ture of the proposed recognition system, composed of two main steps, each comprises several
computational models. In the first step, objects are automatically represented as covariance
matrices followed by a tree-based RF detector that operates on-line. We have shown in (4)
utilizing a bag of covariance matrices as object descriptor improves the accuracy of object
recognition while speed up the learning process, so we are extending this technique, present
its hardware architecture. The on-line RF detector is designed using Logarithmic Number
System (LNS) (10), RF-LNS, allows the reduction of the required word-length to 16 bits, and
consequently a general-purpose microprocessor of the same word-length can be used. For the
compact architecture we made RF-LNS comprises few computation modules, referred to as
‘Tree Units’, ‘Majority Vote Unit’, and ‘Forest Units’. The main contribution of our approach
(in addition to its impacts on the tradeoff between algorithmic setting accuracy and hardware
implementation cost) is three-fold: (1) its direction towards arithmetic complexity reduction
using a modified RF based on LNS (RF-LNS), (2) it has been designed in order to be easily
integrated in a system-on-chip (SoC), which can perform both automatic feature selection and
recognition, and (3) it allows for fair comparison with floating-point (FP) and fixed-point (FX)
implementations. We test and verified the model functionality using numerical simulation,
present results obtained using examples from GRAZ02 dataset (11). First, in Section 2 we
present related works and highlight on general constrains in implementing hardware-based
recognition systems. Section 3 shows the object descriptor we used and overview on RF al-
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Fig. 1. Object Recognition based on RF-LNS which is optimized to be easily integrated in a
System-on-Chip (SoC) platform implementation.

gorithmic settings. In Section 4 we present full architecture and design of our recognition
system. We follow with experimental evaluation and estimation of the required precision in
Section 5. A brief conclusion appears in Section 6.

2. Hardware-based Machine Learning

Perhaps motivated by the high computational complexity of many software-oriented machine
vision algorithms, there have been several attempts to create faster execution hardware imple-
mentations which are able to identify and localize objects in a given scene or an image, achieve
high recognition performance. There are studies about Pulsed Neural Network (PNN) that
employ Pulsed Neuron (PN) or Spiking Neuron object localization and processing. The PN
models and have the ability to adapt, much better than traditional neural nets. The Kernel-
tron (12; 13) is a SVM classification module, with a system precision resolution of no more
than 8 bits. A fully digital architecture for SVM classification employing the linear and RBF
kernels is proposed. The minimal word size they are able to use is 20 bits. In (14) hardware
implementation of Decision Trees (DTs) is proposed. However to the best of our knowledge,
ours is the first attempt to implement RF in hardware. We predict further progress using this
approach.

2.1 Hardware implementations: problems and constraints
Any kind of hardware implementations of machine vision algorithms be it analog, digital, or
optical, brings along various constraints:

• Algorithematic design: Automatic optimize settings of the parameters.

• Accuracy and efficiency: Hardware implementations can only offer limited accuracy. FP
arithmetics are costly in terms of the number of logic elements required while FX im-
plementation may speed up the algorithm but is leading to a definitively power con-
sumption with marginally lose in precision.

• Area: The tradeoff between accuracy required and hardware (chip) area available. Ac-
curacy often comes at the price of an area penalty.

• GPP vs. FPGA: A general purpose processor’s (GPP) hardware contains all the basic
blocks needed to build any logic of mathematical function imaginable but the limita-
tions are in the parallelism available in the program, i.e. performance, and power con-
sumption. FPGA provides flexibility to cope with the current evolving applications but
at the cost of large performance, area, power and reconfiguration time penalties.

2.2 logarithmic Number System (LNS)
LNS is an alternative way to represent real numbers/values beside the conventional FP rep-
resentation. The idea is to convert values into logarithms once and keep them in this repre-
sentation throughout the entire computation. The LNS represents a number by the exponent
in a certain base and a sign bit. The multiplication of two numbers is simply the sum of the
two numbers’ exponent parts, log2(x · y) = log2(x) + log2(y), divisions and square roots are
implemented by fixed-point subtraction and bit shift respectively. However, the addition of
two LNS numbers, log2|(X,Y)|= X+ log2|1+ 2Y−X | is not a linear operation and requires two
fixed-point adder/subtractors, and lookup-tables (LUTs) process (Function Generators (FGs)).
The size of LNS adders increases exponentially as the operands’ word lengths increase. Thus
the LNS arithmetic systems usually have advantages of low precision and constant relative
error.

3. Algorithmtic Considerations

The proposed object recognition approach consists of two basic models, a model for object
descriptor based on covariance matrices (4; 15) and a classifier based on on-line variant of RF
implemented on FPGA using LNS. First we introduce the algorithmtic settings of each model.

3.1 Covariance Matrices Descriptor
We have used bag of covariance matrices (Fig.2), to represent an object region.
Let I be an input color image. Let F be the dimensional feature image extracted from I

F(x,y) = φ(I, x,y) (1)

where function φ can be any feature maps (such as intensity, color, etc). For a given region
R ⊂ F, let {zk}k=1···n be the d dimensional feature points inside R. We represent region R with
d × d covariance matrix CR of feature points.

CR =
1

n − 1

n

∑
k=1

(zk − µ)(zk − µ)T (2)

where µ is the mean of region R centered at the point.

3.2 Image Labeling
We gradually build our knowledge of the image from features to covariance matrix to a bag
of covariance matrices. Starting by forming covariance matrix C from image features such
that each feature Z in C has intensity µ(z) and associated variance λ−1(z), so λ is the inverse
variance (precision). We then group covariance matrices as a set of spatially grouped feature
in C that are likely to share common labels into a bag of covariance matrices.
Covariance matrix. Different regions of an object may have different descriptive powers and,
hence, a difference impact on learning and recognition (Fig.2A). Following (15), we represent
image objects with five covariance matrices Ci=1···5 of the feature computed inside R (Fig.2B),
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Fig. 1. Object Recognition based on RF-LNS which is optimized to be easily integrated in a
System-on-Chip (SoC) platform implementation.

gorithmic settings. In Section 4 we present full architecture and design of our recognition
system. We follow with experimental evaluation and estimation of the required precision in
Section 5. A brief conclusion appears in Section 6.

2. Hardware-based Machine Learning

Perhaps motivated by the high computational complexity of many software-oriented machine
vision algorithms, there have been several attempts to create faster execution hardware imple-
mentations which are able to identify and localize objects in a given scene or an image, achieve
high recognition performance. There are studies about Pulsed Neural Network (PNN) that
employ Pulsed Neuron (PN) or Spiking Neuron object localization and processing. The PN
models and have the ability to adapt, much better than traditional neural nets. The Kernel-
tron (12; 13) is a SVM classification module, with a system precision resolution of no more
than 8 bits. A fully digital architecture for SVM classification employing the linear and RBF
kernels is proposed. The minimal word size they are able to use is 20 bits. In (14) hardware
implementation of Decision Trees (DTs) is proposed. However to the best of our knowledge,
ours is the first attempt to implement RF in hardware. We predict further progress using this
approach.

2.1 Hardware implementations: problems and constraints
Any kind of hardware implementations of machine vision algorithms be it analog, digital, or
optical, brings along various constraints:

• Algorithematic design: Automatic optimize settings of the parameters.

• Accuracy and efficiency: Hardware implementations can only offer limited accuracy. FP
arithmetics are costly in terms of the number of logic elements required while FX im-
plementation may speed up the algorithm but is leading to a definitively power con-
sumption with marginally lose in precision.

• Area: The tradeoff between accuracy required and hardware (chip) area available. Ac-
curacy often comes at the price of an area penalty.

• GPP vs. FPGA: A general purpose processor’s (GPP) hardware contains all the basic
blocks needed to build any logic of mathematical function imaginable but the limita-
tions are in the parallelism available in the program, i.e. performance, and power con-
sumption. FPGA provides flexibility to cope with the current evolving applications but
at the cost of large performance, area, power and reconfiguration time penalties.
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3. Algorithmtic Considerations

The proposed object recognition approach consists of two basic models, a model for object
descriptor based on covariance matrices (4; 15) and a classifier based on on-line variant of RF
implemented on FPGA using LNS. First we introduce the algorithmtic settings of each model.

3.1 Covariance Matrices Descriptor
We have used bag of covariance matrices (Fig.2), to represent an object region.
Let I be an input color image. Let F be the dimensional feature image extracted from I

F(x,y) = φ(I, x,y) (1)

where function φ can be any feature maps (such as intensity, color, etc). For a given region
R ⊂ F, let {zk}k=1···n be the d dimensional feature points inside R. We represent region R with
d × d covariance matrix CR of feature points.

CR =
1

n − 1

n

∑
k=1

(zk − µ)(zk − µ)T (2)

where µ is the mean of region R centered at the point.

3.2 Image Labeling
We gradually build our knowledge of the image from features to covariance matrix to a bag
of covariance matrices. Starting by forming covariance matrix C from image features such
that each feature Z in C has intensity µ(z) and associated variance λ−1(z), so λ is the inverse
variance (precision). We then group covariance matrices as a set of spatially grouped feature
in C that are likely to share common labels into a bag of covariance matrices.
Covariance matrix. Different regions of an object may have different descriptive powers and,
hence, a difference impact on learning and recognition (Fig.2A). Following (15), we represent
image objects with five covariance matrices Ci=1···5 of the feature computed inside R (Fig.2B),
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Fig. 2. (A) Rectangles are examples of possible regions for histogram features. Stable appear-
ance in Rectangles A, B and C are good candidates for a car classifier while regions D is not.
(C) Top, points sampled to calculate the LBP around a point (x,y). Bottom, the use of standard
invariant feature (SIFT). (D) Any region can be represented by a covariance matrix. Size of the
bag is proportional to the number of features used, while the size of the covariance matrix
depends on the dimension of the features.

noting that features in the covariance matrix may be used in multiple image locations.
Color. Color is described by taken Ohta space histogram values of pixels (I1 = R + G + B/3,
I2 = R − B, I3 = (2G − R − B)/2). This histogram is chosen because it is less sensitive to vari-
ations in illumination. Ohta values for each pixel in an image are clustered using k-means,
e.g., each pixel in image I is assigned to the nearest cluster center, then histogram frequency
is normalized.
Appearance. We have used histograms of Local Binary Patterns (LBPs) for representing each
feature’s appearance in some appearance space. Fig.2C depicts the points that must be sam-
pled around a particular point (x,y) in order to calculate the LBP. In our implementation, each
sample point lies at a distance of 2 pixels from (x,y). Instead of the traditional 3 × 3 rectangu-
lar neighborhood, we sample neighborhood circularly with two different radii (1 and 3). The
resulting operators are denoted by LBP8,1 and LBP8,1+8,3, where subscripts tell the number of
samples and the neighborhood radii.
A bag of covariance matrices. A bag of covariance which is a concatenation of Ohta color
space histogram, and appearance model based on LBP and Scale Invariant Feature Transform
(SIFT) of different features of an image region is presented in Fig.1E. Then estimate the bag of
covariance matrix likelihoods P(Ii|C, Ii) and the likelihood that each bag of covariance matri-
ces is homogeneously labeled. We use this representation to automatically detect any target
in images. We then apply on-line RF learner to select object descriptors and to learn an object
classifier.

3.3 RF for Recognition
A detailed discussion of Breiman’s RF (1) learning algorithm is beyond our scope here, how-
ever, in order to simplify the further discussion, we briefly define some fundamental terms:
Decision-tree. For the k-th tree, a random covariance matrix Ck is generated, independent of
the past random covariance matrices C1, . . . ,Ck−1, and a tree is grown using the training set of

positive (contains the object relevant to the class) and negative (does not contain the object)
image I, and covariance feature Ck. The decision generated by a random tree corresponds to
a covariance feature selected by learning algorithm. Each tree casts a unit vote for a single
matrix, resulting in a classifier h (I,Ck).
Forest. Given a set of M decision trees, a forest is computed as ensemble of these tree-
generated base classifiers h (I,Ck), k = 1, . . . ,n, using a majority vote.
Majority vote. If there are M Decision Trees, the majority voting method will give a correct
decision if at least f loor(M/2) + 1 decision trees gives correct outputs. If each tree has prob-
ability p to make a correct decision, then the forest will have the following probability P to
make a correction decision.

P =
b

∑
i=floor(M/2)+1

(
M
i

)
p(1 − p) (3)

3.4 On-line RF for Recognition
To obtain an on-line algorithm, the steps above must be on-line where the current base classi-
fier is updated whenever a new sample arrives. In particular our on-line RF involves two steps
in inferring the object category (Algorithm 1). First, based on covariance object descriptor we
develop a new, conditional permutation scheme for the computation of feature importance
measure. Second, the fixed set tree K is initialized, then individual trees in RF are incremen-
tally generated by specifically selected covariance matrix from the bag of covariance matrices.
For updating, any on-line learning algorithm may be used, but we employ a standard Karman
filtering technique.

Algorithm 1 On-line Random Forests

1: Initially select the number K of trees to be generated.
2: for k = 1,2, · · · , K do
3: T̀ b̄ootstrap sample from T initialize e = 0, t = 0, Tk = φ
4: Do until Tk = Nk
5: Vector Ck that represent a bag of covariance is generate
6: Construct Tree h (I,Ck) using any decision tree algorithm
7: Each Tree makes its estimation based on a single matrix from the bag of covariance

matrices at I
8: Each Tree casts a vote for most popular covariance matrix at image I
9: The popular covariance matrix at I at is predicted by selecting the matrix with max

votes over h1, h2, . . . , hk
10: hl = arg maxy ∑K

k=1 I(hk(x) = y)
11: Return a hypothesis hl
12: end for
13: Get the next sample set
14: Output: Proximity measure, feature importance, a hypothesis h
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fier is updated whenever a new sample arrives. In particular our on-line RF involves two steps
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measure. Second, the fixed set tree K is initialized, then individual trees in RF are incremen-
tally generated by specifically selected covariance matrix from the bag of covariance matrices.
For updating, any on-line learning algorithm may be used, but we employ a standard Karman
filtering technique.
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1: Initially select the number K of trees to be generated.
2: for k = 1,2, · · · ,K do
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4: Do until Tk = Nk
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4. Hardware Architecture

4.1 FPGA Architecture
All FPGAs consist of three major components: 1) logic blocks (LBs); 2) I/O blocks; and 3)
programmable routing, as shown in Fig.3(A). A logic block (LB) is functionally complete logic
circuits, partitioned to LB size, mapped and routed, and place in an interconnect framework to
perform a desired operation. Field programmability is achieved through switches (transistors
controlled by memory element or fuses) and each I/O block is programmed to act as an input
or output, as required, i.e., N-input LUTs can implement any n-input boolean function. The
programmable routing is also configured to make the necessary connections between logic
blocks, and from logic blocks to I/O blocks. The processing power of an FPGA is highly
dependent on the processing capabilities of its LBs and the total number of LBs available in
the array. Generally, FPGAs use logic blocks that contain one or more LUT, typically with at
least four-inputs. A four-input LUT can implement any binary function of four logic inputs.
Fig.3(B) shows the architecture of a simple LB containing one four-input LUT and one flip-flop
for storage.

Fig. 3. (A) Granularity and interconnection structure of generic Xilinx FPGA. (B) An architec-
ture of a logic block with one, four-input LUT use for implementation of memory and shift
registers.

4.2 Transform into Log-domain
Rather than adapting the FP arithmetic we based on LNS, eliminate the need for multiplica-
tions and division, allowing all operations to be carried out using shifts and additions. In LNS,
a number x is represented in signed magnitude form, i.e., as a pair (S, e), where x = (−1)s(r)e,
S being the sign bit (which is either 0 or 1 according to the sign of x) and e being the signed
exponent of the radix r (usually in radix 2). The exponent e is expressed in fixed-point bi-
nary mode with say, G bits for the integer part and F bits for the fractional part and one bit

for the sign of the exponent, i.e., with a total of (G + F + 1) bits. If the radix is considered
to be 2, then the smallest number that can be represented using the scheme is 2−N , where
N = (sG − 1) + (1 − 2−F) = (2G − 2−F). The ratio between two consecutive numbers is equal
to r2−F

, and the corresponding precision e is roughly (lnr)2−F. Typically, if G = 5, F = 30, and
r = 2, we can have a precision of 30 bits in radix 2. However, for the purpose of comparison
with the precision of FP representation, e will be assumed as 2−23(≈ 10−7). Numbers closer
to zero, are represented with better precision in LNS than FP systems. However, LNS depart
from FP in that, the relative error of LNS is constant and LNS can often achieve equivalent
signal-to-noise ratio with fewer bits of precision relative to FP architectures.

4.3 Object Recognition Architecture based on RF-LNS
Fig.4 shows RF-LNS object classifier proposed in this paper. The classifier consists of three
main design blocks (a) The LG block; (b) The ACC block; and (c) The SIGM block. The ‘Co-
variance Unit’ in Fig.1 contains all the features extracted from an image in a form of bag of
covariance matrices. The output of covariance descriptor becomes the input of the RF-LNS
classifier. However, Function φ given by eq(1) consists of float values which require much
place for storing in an FPGA memory. In order to reduce the hardware cost, we propose to
approximate the function φ using LG. This function will transform float elements of the φ
into binary elements. For ‘Tree Units’ we compute 16 covariance matrices in 32 bit memory.
Basically the decision trees consist of two types of nodes: decision nodes, corresponding to
state variables and least nodes, which correspond to all possible covariance features that can
be taken. In a decision node a decision is taken about one of the input. Each least node stores
the state values for the corresponding region in the image, meaning that a least node stores
a value for each relevant covariance matrix that can be taken. The tree starts out with only
one least node that represents the entire image region then, a decision has to be made whether
the node should be split or not. ACC block that does the accumulation operations at each
node. Once a tree is constructed it can be used to map an input vector to a least node, which
corresponds to a region in the image. Then a decision tree can be converting into an equiva-
lent ‘Tree Unit’ by extracting one logic function per class from the tree structure. Each ‘Tree
Units’ gives a unit vote for its popular object class. ‘Forest Unit’ is an ensemble of trees grown
incrementally to a certain depth. The object is recognized as the one having the majority vote,
stored at ‘Majority Vote Unit’. The SIGM block that performs the sigmoid evaluation function
for majority votes.

Fig. 4. RF-LNS object classifier Architecture.
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variance Unit’ in Fig.1 contains all the features extracted from an image in a form of bag of
covariance matrices. The output of covariance descriptor becomes the input of the RF-LNS
classifier. However, Function φ given by eq(1) consists of float values which require much
place for storing in an FPGA memory. In order to reduce the hardware cost, we propose to
approximate the function φ using LG. This function will transform float elements of the φ
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Basically the decision trees consist of two types of nodes: decision nodes, corresponding to
state variables and least nodes, which correspond to all possible covariance features that can
be taken. In a decision node a decision is taken about one of the input. Each least node stores
the state values for the corresponding region in the image, meaning that a least node stores
a value for each relevant covariance matrix that can be taken. The tree starts out with only
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corresponds to a region in the image. Then a decision tree can be converting into an equiva-
lent ‘Tree Unit’ by extracting one logic function per class from the tree structure. Each ‘Tree
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incrementally to a certain depth. The object is recognized as the one having the majority vote,
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5. Evaluation

The functionality of the proposed system was simulated, and the hardware is programmed.
We now demonstrate the usefulness of this frame work in the area of recognition generic
objects such as bikes, cars, and persons.

5.1 Dataset
We have used data derived from the GRAZ021 dataset (11), a collection of 640 × 480 24-bit
color images. As can be seen in Fig.5, this dataset has three object classes, bikes, cars, persons,
and in addition to the background class (270 images). This database contains variability with
respect to scale and clutter. Objects of interest are often occluded, and they are not dominant in
the image. According to (16) the average ratio of object size to image size counted in number
of pixels is 0.22 for bikes, 0.17 for people, and 0.9 for cars. Thus this dataset is more complex
dataset to learn detectors from, but of more interest because it better reflects the real world
complexity. Table 1 reports the number of images and objects in each class, 380 images are
available for background class .

Dataset Images Objects
Bikes 365 511
Cars 420 770
Persons 311 785
Total 1096 2066

Table 1. Number of images and objects in each class in the GRAZ02 dataset.

5.2 Experimental Settings
Our RF-LNS is trained with varying amounts (10%,50% and 90% respectively) of randomly
selected training data. All images not selected for the training split were put into the test
split. For the 10% training data experiments, 10% of images were selected randomly with the
remainder used for testing. This was repeated 20 times. For the 50% training data experi-
ments, stratified 5 × 2 fold cross validation was used. Each cross validation selected 50% of
the dataset for training and tested the classifiers on the remaining 50%; the test and training
sets were then exchanged and the classifiers retrained and retested. This process was repeated
5 times. Finally, for the 90% training data situation, stratified 1 × 10 fold cross validation was
performed, with the dataset divided into ten randomly selected, equally sized subsets, with
each subset being used in turn for testing after the classifiers were trained on the remaining
nine subsets.

6. Performances

GRAZ02 images contain only one object category per image so the recognition task can be
seen as a binary classification problem: bikes vs. background (i.e., non-bikes), people vs.
background, and car vs. background. Generalization performances in these object recogni-
tion experiments were estimated by statistic measure; the Area Under the ROC Curve (AUC)
to measure the classifiers performance. AUC measures of classifier performance that is inde-
pendent of the threshold, meaning it summarizes how true positive and false positive rates

1 available at http://www.emt.tugraz.at/˜pinz/data/

Fig. 5. Examples from GRAZ02 dataset (11) for four different categories: A) cars and ground
truth, B) bikes and ground truth, C) persons and ground truth, and D) background.

change as the threshold gradually increases from 0.0 to 1.0, i.e., it does not summarize accu-
racy. An ideal perfect classifier has an AUC of 1.0 and a random classifier has an AUC of
0.5.

6.1 Finite Precision Analysis
The primary task here is to analyze the precision requirements for performing recognition.
The RF-LNS precision was varied to ascertain optimal LNS precisions and compare them
against the cost of using FP architectures. Tables 2, 3, and 4 give the mean AUC values across
all runs to 2 decimal places for RF-LNS and training data amount combinations, for the bikes,
cars and people datasets respectively. The performance of RF-LNS is reported with weight
quantized with 4, 8, and 16 bits, and for different decision tree depths, from depth = 3 to depth
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= 7. For example a figure of 85% means that 85% of object images were correctly classified but
15% of the background images were incorrectly classified (i.e. thought to be foreground). For
RF-LNS to maintain acceptable performance, 16 bits of precision are sufficient for all GRAZ02
categories, even when only 10% training examples are used. Such low precision required by
RF-LNS makes it competitive with FP arithmetic for our generic object recognition application.

RF-LNS (4-bit Precision) RF-LNS (8-bit Precision) RF-LNS (16-bit Precision)
D=3 D=4 D=5 D=6 D=7 D=3 h=4 D=5 D=6 D=7 D=3 D=4 D=5 D=6 D=7

10% 0.79 0.79 0.77 0.81 0.81 0.81 0.81 0.80 0.83 0.83 0.83 0.83 0.81 0.84 0.83
50% 0.86 0.86 0.82 0.81 0.83 0.88 0.89 0.85 0.88 0.86 0.90 0.90 0.86 0.89 0.89
90% 0.80 0.81 0.81 0.83 0.88 0.87 0.87 0.87 0.88 0.90 0.90 0.91 0.90 0.90 0.90

Table 2. Mean AUC performance of RF-LNS on the Bikes vs. Background dataset, by amount
of training data. Performance of RF-LNS is reported for different Depths (D).

RF-LNS (4-bit Precision) RF-LNS (8-bit Precision) RF-LNS (16-bit Precision)
D=3 D=4 D=5 D=6 D=7 D=3 D=4 D=5 D=6 D=7 D=3 D=4 D=5 D=6 D=7

10% 0.66 0.70 0.70 0.75 0.71 0.68 0.73 0.73 0.76 0.73 0.71 0.75 0.75 0.77 0.75
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90% 0.77 0.75 0.75 0.73 0.79 0.81 0.81 0.78 0.78 0.82 0.83 0.83 0.81 0.80 0.85

Table 3. Mean AUC performance of RF-LNS on the Cars vs. Background dataset, by amount
of training data. Performance of RF-LNS is reported for different Depths (D).
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10% 0.83 0.73 0.77 0.77 0.79 0.77 0.74 0.80 0.79 0.81 0.80 0.78 0.81 0.81 0.82
50% 0.79 0.80 0.79 0.78 0.83 0.81 0.83 0.83 0.80 0.84 0.85 0.86 0.85 0.82 0.85
90% 0.80 0.80 0.81 0.78 0.83 0.81 0.82 0.82 0.80 0.86 0.88 0.86 0.83 0.83 0.87

Table 4. Mean AUC performance of RF-LNS on the Persons vs. Background dataset, by
amount of training data. Performance of RF-LNS is reported for different Depths (D).

6.2 Efficiency and Hardware area
The efficiency of RF-LNS classifier is evaluated in terms of the number of slices. This is sim-
ply equivalent to hardware area required to achieve acceptable performance. Table 5 shows
number of slice used by RF-LNS classifier as compared with 10- and 20-bit fixed-point (FX)
implementations. The number of slices is reported for different Tree Unit for each dataset.
RF-LNS takes almost the same number of slices as 10-bit FX but less than one-half of 20-bit
FX implementation. This is interesting because 10-bit FX implementation has been widely
recognized for not acceptable performance, particularly for recognition problem. Our design

also achieved high speed clock rate processing. For the 1-bit RF-LNS, the power dissipation is
small, and the area usage on FPGA is less than 2 percents.

7. Conclusions and Future Works

Efficient hardware implementations of machine-learning techniques yield a variety of advan-
tages over software solutions: increased processing speed, and reliability as well as reduced
cost and complexity. In this paper RF technique is modified so that classification is performed
by LNS arithmetic. The model is applied for generic object recognition task, it shows that at
low precision the RF-LNS hardware has significant area savings compared to the fixed-point
alternative. With these characteristics, RF-LNS may be a good way for designing a real-time
low power object recognition systems. Our future goals include further exploring precision re-
quirements for hardware RF-LNS, noise analysis to determine the robustness of the hardware
classifier and expanding LNS hardware architectures to other machine learning algorithms.

Dataset Tree Units 16-bit LNS 10-bit FX 20-bit FX
Bikes 3 315 219 576

4 498 407 713
5 611 622 878
6 823 835 1103
7 1010 974 1345

Cars 3 277 283 603
4 397 476 783
5 536 694 866
6 784 943 1002
7 989 1287 1311

Persons 3 336 318 409
4 534 535 657
5 765 689 845
6 878 926 1127
7 1123 1158 1287

Table 5. Slices used for different tree units for each dataset.
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alternative. With these characteristics, RF-LNS may be a good way for designing a real-time
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quirements for hardware RF-LNS, noise analysis to determine the robustness of the hardware
classifier and expanding LNS hardware architectures to other machine learning algorithms.
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1. Introduction 

Recently, the quantity of goods transported by sea has increased steadily since the cost of 
transportation by sea is lower than other transportation methods. Various automation 
methods are used for the speedy and accurate processing of transport containers in the 
harbor. The automation systems for transport container flow processing are classified into 
two types: the barcode processing system and the automatic recognition system of container 
identifiers based on image processing. However, these days the identifier recognition 
system based on images is more widely used in the harbors. 
Identifiers of shipping containers are given in accordance with the terms of ISO standard, 
which consist of 4 code groups such as shipping company codes, container serial codes, 
check digit codes and container type codes (ISO-6346, 1995; Kim, 2003). And, only the first 
11 identifier characters are prescribed in the ISO standard and shipping containers are able 
to be discriminated by automatically recognizing the first 11 characters. But, other features 
such as the foreground and background colors, the font type and the size of container 
identifiers, etc., vary from one container to another since the ISO standard doesn’t prescribes 
other features except code type (Kim, 2004; Nam et al., 2001). Since identifiers are printed on 
the surface of containers, shapes of identifiers are often impaired by the environmental 
factors during the transportation by sea. The damage to a container surface may lead to a 
distortion of shapes of identifier characters in a container image. So, the variations in the 
feature of container identifiers and noises make it quite difficult the extraction and 
recognition of identifiers using simple information like color values (Kim, 2004). 
Generally, container identifiers have another feature that the color of characters is black or 
white. Considering such a feature, in a container image, all areas excepting areas with black 
or white colors are regarded as noises, and areas of identifiers and noises are discriminated 
by using a fuzzy-based noise detection method. Noise areas are replaced with a mean pixel 
value of the whole image area, and areas of identifiers are extracted and binarized by 
applying the edge detection by Sobel masking operation and the vertical and horizontal 
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block extraction to the conversed image one by one. In the extracted areas, the color of 
identifiers is converted to black and one of background to white, and individual identifiers 
are extracted by using a 8-directional contour tacking algorithm. An ART2-based self-
organizing supervised learning algorithm for the identifier recognition is proposed in this 
chapter, which creates nodes of the hidden layer by applying ART2 between the input layer 
and the hidden one and improves performance of learning by applying generalized delta 
learning and the Delta-bar-Delta algorithm (Vogl et al., 1998). Experiments using many 
images of shipping containers show that the presented identifier extraction method and the 
ART2-based supervised learning algorithm is more improved compared with the methods 
proposed previously. 

2. The proposed container identifier recognition method 

2.1 Extraction of container identifier areas 
Due to the rugged surface shape of containers and noises vertically appeared by an external 
light, a failure may occur in the extraction of container identifier areas from a container 
image. To refine the failure problem, a novel method is proposed for extraction of identifier 
areas based on a fuzzy-based noise detection method. 
In the proposed method, edges of identifiers are detected by applying Sobel masking 
operation to a grayscale image of the original image and extracts areas of identifiers using 
information on edges. Sobel masking operation is sensitive to noises so that it detects noises 
by an external light as edges. To remove an effect of noises in the edge detection, first, noise 
pixels are detected by a fuzzy method and replaced by the pixels with a mean gray value. 
Next, Applying Sobel masking to the noise-removed image, areas of container identifiers are 
separated from background areas. 

2.2 Fuzzy-based noise detection 
To remove noises by an external light, an container image is converted to a grayscale one 
and apply the membership function like Fig. 1 to each pixel of the grayscale image, deciding 
whether the pixel is a noise or not. In Fig. 1, C and E are categories being likely to belong to 
an area of identifiers, and D is the category being likely to be a noise. Eq. (1) shows the 
expression for the membership function of Fig. 1. The criterion to distinguish pixels of noise 
and non-noise using the degree of membership in the proposed method is given in Table 1. 
 

50 110 170
0.0

0.5

1.0

Intensity value of pixel

Degree of
membership

C D E

 
Fig. 1. Membership function(G) for gray-level pixels 
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pixel of non-noise u(G)  <  0.42 

pixel of noise u(G) ≥  0.42 

Table 1. Criterion to distinguish pixels of noise and non-noise 
 
To observe the effectiveness of the fuzzy-based noise detection, results of edge detection by 
Sobel masking are compared between the original image and the noise-removed image by 
the proposed method. Fig. 2 is the original container image, and Fig. 3 is the output image 
generated by applying only Sobel masking to a grayscale image of Fig. 2. Fig. 4 is results of 
edge detection obtained by applying the fuzzy-based noise removal and Sobel masking to 
Fig.2. First, the fuzzy-based noise detection method is applied to a grayscale image of the 
original image and pixels detected as noises are replaced with a mean gray value. Next, 
edges of container identifiers are detected by applying Sobel masking to the noise-removed 
image. As shown in Fig. 3, noise removal by the proposed fuzzy method generates more 
efficient results in the extraction of areas of identifiers. 
 

 
Fig. 2. An original container image 
 

 
Fig. 3. Result of edge detection by only Sobel masking 
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block extraction to the conversed image one by one. In the extracted areas, the color of 
identifiers is converted to black and one of background to white, and individual identifiers 
are extracted by using a 8-directional contour tacking algorithm. An ART2-based self-
organizing supervised learning algorithm for the identifier recognition is proposed in this 
chapter, which creates nodes of the hidden layer by applying ART2 between the input layer 
and the hidden one and improves performance of learning by applying generalized delta 
learning and the Delta-bar-Delta algorithm (Vogl et al., 1998). Experiments using many 
images of shipping containers show that the presented identifier extraction method and the 
ART2-based supervised learning algorithm is more improved compared with the methods 
proposed previously. 

2. The proposed container identifier recognition method 

2.1 Extraction of container identifier areas 
Due to the rugged surface shape of containers and noises vertically appeared by an external 
light, a failure may occur in the extraction of container identifier areas from a container 
image. To refine the failure problem, a novel method is proposed for extraction of identifier 
areas based on a fuzzy-based noise detection method. 
In the proposed method, edges of identifiers are detected by applying Sobel masking 
operation to a grayscale image of the original image and extracts areas of identifiers using 
information on edges. Sobel masking operation is sensitive to noises so that it detects noises 
by an external light as edges. To remove an effect of noises in the edge detection, first, noise 
pixels are detected by a fuzzy method and replaced by the pixels with a mean gray value. 
Next, Applying Sobel masking to the noise-removed image, areas of container identifiers are 
separated from background areas. 

2.2 Fuzzy-based noise detection 
To remove noises by an external light, an container image is converted to a grayscale one 
and apply the membership function like Fig. 1 to each pixel of the grayscale image, deciding 
whether the pixel is a noise or not. In Fig. 1, C and E are categories being likely to belong to 
an area of identifiers, and D is the category being likely to be a noise. Eq. (1) shows the 
expression for the membership function of Fig. 1. The criterion to distinguish pixels of noise 
and non-noise using the degree of membership in the proposed method is given in Table 1. 
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Sobel masking are compared between the original image and the noise-removed image by 
the proposed method. Fig. 2 is the original container image, and Fig. 3 is the output image 
generated by applying only Sobel masking to a grayscale image of Fig. 2. Fig. 4 is results of 
edge detection obtained by applying the fuzzy-based noise removal and Sobel masking to 
Fig.2. First, the fuzzy-based noise detection method is applied to a grayscale image of the 
original image and pixels detected as noises are replaced with a mean gray value. Next, 
edges of container identifiers are detected by applying Sobel masking to the noise-removed 
image. As shown in Fig. 3, noise removal by the proposed fuzzy method generates more 
efficient results in the extraction of areas of identifiers. 
 

 
Fig. 2. An original container image 
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Fig. 4. Result of edge detection by fuzzy-based noise-removal and Sobel masking 

2.3 Binarization of container identifier areas 
Currently, the iterative binarization algorithm is mainly used in the preprocessing of pattern 
recognition. The iterative binarization algorithm, first, roughly determines an initial 
threshold, divides an input image to two pixel groups using the threshold, calculates a mean 
value for each pixel group, and sets the arithmetic mean of two mean values to a new 
threshold. And, the algorithm repeats the above processing until there is no variation of 
threshold value and sets the last value to the threshold value for binarization operation. In 
the case of a noise-removed container image, since the difference of intensity between the 
background and the identifiers is great, the iterative algorithm is able to provide a good 
threshold value. 

2.4 Extraction of individual identifiers 
Individual identifiers are extracted by applying the 8-directional contour tracking method 
(Chen & Hsu, 1989) to binarized areas of container identifiers. In the extraction process, the 
extraction of individual identifiers is successful in the case that the background color is a 
general color except white one like Fig. 5, and on the other hand, the extraction is failed in 
the case with white background color as shown in Fig. 6. In the binarization process, 
background pixels of a bright intensity are converted to black and identifier pixels of a dark 
intensity are converted to white. Since the contour tracking method detects edges of an area 
with black color, it can not detect edges of identifiers from target areas with white 
background. So a result of binarization process is reversed for identifier areas with white 
background. That is, background pixels are converted to white and identifier pixels to black. 
Fig. 7 shows that the pixel reversal lead to a success of edge detection in an identifier area 
with white background presented in Fig. 6. 
 

 
Fig. 5. Identifier area with a general color and successful results of edge extraction 

 
Fig. 6. Identifier area with white color and failed results of edge extraction 
 

 
Fig. 7. Reversed binarized area of Fig. 6 and successful result of edge detection 
 
The procedure of extracting individual identifiers using the 8-directional contour tracking 
method is as follow: r

iP and c
iP are pixels of horizontal and vertical directions being 

currently scanned in the identifier area, respectively, and 1r
iP  and 1c

iP  are pixels of the two 
directions being next scanned in the identifier area. And r

sP and c
sP are pixels of horizontal 

and vertical directions in the first mask of the 8-directional contour tracking. 
Step 1. Initialize with Eq. (2) in order to apply the 8-neighborhood contour tracking 

algorithm to the identifier area, and find the pixel by applying tracking mask as 
shown in Fig. 8. 

 1 1,r r c c
i i i iP P P P    (2) 

Step 2. When a black pixel is found after applying the tracking mask in the current pixel, 
calculate the value of  r

iP and c
iP   as shown in Eq. (3) 

 
7 7
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0 0
,r r c c

i i i i
i i

P P P P 

 

    (3) 

Step 3.  For the 8 tracking masks, apply Eq. (4) to decide the next tracking mask.  

 if r r c c
i i i iP P and P P  1 1 then rotates counter-clockwise. (4) 

Step 4. Stop if  r
iP and c

iP  return back to r
sP and c

sP  or go back to the Step 1 and repeat.  If  

1 1r r c c
i s i sP P and P P     then break, else go back to Step 1. 



An Intelligent System for Container Image Recognition using 	
ART2-based Self-Organizing Supervised Learning Algorithm 167

 
Fig. 4. Result of edge detection by fuzzy-based noise-removal and Sobel masking 
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Step 3.  For the 8 tracking masks, apply Eq. (4) to decide the next tracking mask.  
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sP  or go back to the Step 1 and repeat.  If  
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i s i sP P and P P     then break, else go back to Step 1. 
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Fig. 5 and Fig. 7 shows extraction results of individual identifiers by using the 8-directional 
contour tracking method. 
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Fig. 8. 8-diectional contour tracking masks 

2.5 Recognition of container identifiers using ART2-based self-organizing supervised 
leaning algorithm 
The error backpropagation algorithm uses gradient descent as the supervised learning rule 
to minimize the cost function defined in terms of the error value between the output value 
and the target one for a given input. Hence, the algorithm has the drawback that the 
convergence speed of learning is slower and the possibility of falling into the local minima is 
induced by the insufficient number of nodes in the hidden layer and the unsuitable initial 
connection weights. During the learning process, the algorithm uses credit assignment for 
propagating error value of the output layer’s nodes backward to the nodes in the hidden 
layer. As a result, paralysis can be induced in the hidden layer. Generally, the recognition 
algorithms using the error backpropagation are plagued by the falling-off of recognition rate 
caused by the empirical determination of the number of hidden layer nodes and the credit 
assignment procedure(Kim & Yun, 1999). 
Fuzzy C-Means-based RBF networks uses the fuzzy C-Means algorithm to generate the 
middle layer. It has a disadvantage of consuming too much time when applied to character 
recognition. In character recognition, a binary pattern is usually used as the input pattern. 
Thus, when the fuzzy C-Means algorithm is applied to the training pattern composed of 0 
and 1, it is not only difficult to precisely classify input patterns but also takes a lot of 
training time compared to other clustering algorithms(Kim et al., 2005). 
The ART2 architecture was evolved to perform learning for binary input patterns and also 
accommodate continuous valued components in input patterns(Carpenter et al., 1991). In 
the ART2 algorithm, connection weights are modified according to the calculation of mean 
values of all input patterns. Then the cluster center is calculated by adapting it to the new 
pattern. 
However, the averaged mean value of the difference in input vector and connection weight 
is used for comparison with the vigilance factor, which leads to the possibility of an input 
pattern being classified to a similar cluster having different properties (Kim & Kim, 2004). 
This could happen particularly in cases where the pattern dimensionality is large and one 

feature drastically differs from the cluster center but its impact is minimized due to 
averaging all differences. When the traditional ART2 algorithm was applied to the 
recognition of container identifiers, it was observed that the recognition rate declined due to 
the classification of such different input patterns to the same cluster. Therefore, we propose 
a novel ART2-based hybrid network architecture where the middle layer neurons have RBF 
(Radial Basis Function) properties and the output layer neurons have a sigmoid function 
property. 
An ART2-based self-organizing supervised learning algorithm for the recognition of 
container identifiers, is proposed in this chapter. First, a new leaning structure is applied 
between the input and the middle layers, which applies ART2 algorithm between the two 
layers, select a node with maximum output value as a winner node, and transmits the 
selected node to the middle layer. Next, generalized Delta learning algorithm and Delta-bar-
Delta algorithm are applied in the learning between the middle and the output layers, 
improving the performance of learning. The proposed learning algorithm is summarized as 
follows: 
1. The connection structure between the input and the middle layers is like ART2 

algorithm and the output layer of ART2 becomes the middle layer of the proposed 
learning algorithm. 

2. Nodes of the middle layer mean individual classes. Therefore, while the proposed 
algorithm has a fully-connected structure on the whole, it takes the winner node 
method that compares target vectors and output vectors and back-propagates a 
representative class and the connection weight. 

3. The proposed algorithm performs the supervised learning by applying generalized 
Delta learning as the learning structure between the middle and the output layers. 

4. The proposed algorithm improves the performance of learning by applying Delta-bar-
Delta algorithm to generalized Delta learning for the dynamical adjustment of a 
learning rate. When defining the case that the difference between the target vector and 
the output vector is less than 0.1 as an accuracy and the opposite case as an inaccuracy, 
Delta-bar-Delta algorithm is applied restrictively in the case that the number of 
accuracies is greater than or equal to inaccuracies with respect to total patterns. This 
prevents no progress or an oscillation of learning keeping almost constant level of error 
by early premature situation incurred by competition in the learning process. 

The detailed description of ART2-based self-organizing supervised learning algorithm is 
like Fig. 9. 

3. Performance evaluation 

The proposed algorithm is implemented by using Microsoft Visual C++ 6.0 on the IBM-
compatible Pentium-IV PC for performance evaluation. 79 container images with size of 
640x480 are used in the experiments for extraction and recognition of container identifiers. 
In the extraction of identifier areas, the previously proposed method fails to extract in 
images containing noises vertically appearing by an external light and the rugged surface 
shape of containers. On the other hand, the proposed extraction method detects and 
removes noises by using a fuzzy method, improving the success rate of extraction compared 
with the previously proposed. The comparison of the success rate of identifier area 
extraction between the proposed method in this chapter and the previously proposed 
method is like Table 2.  
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Fig. 5 and Fig. 7 shows extraction results of individual identifiers by using the 8-directional 
contour tracking method. 
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2.5 Recognition of container identifiers using ART2-based self-organizing supervised 
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The error backpropagation algorithm uses gradient descent as the supervised learning rule 
to minimize the cost function defined in terms of the error value between the output value 
and the target one for a given input. Hence, the algorithm has the drawback that the 
convergence speed of learning is slower and the possibility of falling into the local minima is 
induced by the insufficient number of nodes in the hidden layer and the unsuitable initial 
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propagating error value of the output layer’s nodes backward to the nodes in the hidden 
layer. As a result, paralysis can be induced in the hidden layer. Generally, the recognition 
algorithms using the error backpropagation are plagued by the falling-off of recognition rate 
caused by the empirical determination of the number of hidden layer nodes and the credit 
assignment procedure(Kim & Yun, 1999). 
Fuzzy C-Means-based RBF networks uses the fuzzy C-Means algorithm to generate the 
middle layer. It has a disadvantage of consuming too much time when applied to character 
recognition. In character recognition, a binary pattern is usually used as the input pattern. 
Thus, when the fuzzy C-Means algorithm is applied to the training pattern composed of 0 
and 1, it is not only difficult to precisely classify input patterns but also takes a lot of 
training time compared to other clustering algorithms(Kim et al., 2005). 
The ART2 architecture was evolved to perform learning for binary input patterns and also 
accommodate continuous valued components in input patterns(Carpenter et al., 1991). In 
the ART2 algorithm, connection weights are modified according to the calculation of mean 
values of all input patterns. Then the cluster center is calculated by adapting it to the new 
pattern. 
However, the averaged mean value of the difference in input vector and connection weight 
is used for comparison with the vigilance factor, which leads to the possibility of an input 
pattern being classified to a similar cluster having different properties (Kim & Kim, 2004). 
This could happen particularly in cases where the pattern dimensionality is large and one 

feature drastically differs from the cluster center but its impact is minimized due to 
averaging all differences. When the traditional ART2 algorithm was applied to the 
recognition of container identifiers, it was observed that the recognition rate declined due to 
the classification of such different input patterns to the same cluster. Therefore, we propose 
a novel ART2-based hybrid network architecture where the middle layer neurons have RBF 
(Radial Basis Function) properties and the output layer neurons have a sigmoid function 
property. 
An ART2-based self-organizing supervised learning algorithm for the recognition of 
container identifiers, is proposed in this chapter. First, a new leaning structure is applied 
between the input and the middle layers, which applies ART2 algorithm between the two 
layers, select a node with maximum output value as a winner node, and transmits the 
selected node to the middle layer. Next, generalized Delta learning algorithm and Delta-bar-
Delta algorithm are applied in the learning between the middle and the output layers, 
improving the performance of learning. The proposed learning algorithm is summarized as 
follows: 
1. The connection structure between the input and the middle layers is like ART2 

algorithm and the output layer of ART2 becomes the middle layer of the proposed 
learning algorithm. 

2. Nodes of the middle layer mean individual classes. Therefore, while the proposed 
algorithm has a fully-connected structure on the whole, it takes the winner node 
method that compares target vectors and output vectors and back-propagates a 
representative class and the connection weight. 

3. The proposed algorithm performs the supervised learning by applying generalized 
Delta learning as the learning structure between the middle and the output layers. 

4. The proposed algorithm improves the performance of learning by applying Delta-bar-
Delta algorithm to generalized Delta learning for the dynamical adjustment of a 
learning rate. When defining the case that the difference between the target vector and 
the output vector is less than 0.1 as an accuracy and the opposite case as an inaccuracy, 
Delta-bar-Delta algorithm is applied restrictively in the case that the number of 
accuracies is greater than or equal to inaccuracies with respect to total patterns. This 
prevents no progress or an oscillation of learning keeping almost constant level of error 
by early premature situation incurred by competition in the learning process. 

The detailed description of ART2-based self-organizing supervised learning algorithm is 
like Fig. 9. 

3. Performance evaluation 

The proposed algorithm is implemented by using Microsoft Visual C++ 6.0 on the IBM-
compatible Pentium-IV PC for performance evaluation. 79 container images with size of 
640x480 are used in the experiments for extraction and recognition of container identifiers. 
In the extraction of identifier areas, the previously proposed method fails to extract in 
images containing noises vertically appearing by an external light and the rugged surface 
shape of containers. On the other hand, the proposed extraction method detects and 
removes noises by using a fuzzy method, improving the success rate of extraction compared 
with the previously proposed. The comparison of the success rate of identifier area 
extraction between the proposed method in this chapter and the previously proposed 
method is like Table 2.  
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For the experiment of identifier recognition, applying the 8-directional contour tracking 
method to 72 identifier areas extracted by the proposed extraction algorithm, 284 alphabetic 
characters and 500 numeric characters are extracted. The recognition experiments are 
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Fig. 9. ART2-based self-organizing supervised learning algorithm 
 

 Previously-proposed method Proposed method in this chapter 

Success rate 55/79(69.6%) 72/79(91.1%) 

Table 2. Comparison of the success rate of identifier area extraction 
 
performed with the FCM-based RBF network and the proposed ART2-based self-organizing 
supervised learning algorithm using extracted identifier characters and compared the 
recognition performance in Table 3. 
In the experiment of identifier recognition, the learning rate and the momentum are set to 
0.4 and 0.3 for the two recognition algorithms, respectively. And, for ART2 algorithm 

generating nodes of the middle layer in the proposed algorithm, vigilance variables of two 
character types are set to 0.4. 
When comparing the number of nodes of the middle layer between the two algorithms, the 
proposed algorithm creates more nodes than FCM-based RBF network, but via the 
comparison of the number of Epochs, it is known that the number of iteration of learning in 
the proposed algorithm is less than FCM-based RBF network. That is, the proposed 
algorithm improves the performance of learning. Also, comparing the success rate of 
recognition, it is able to be known that the proposed algorithm improves the performance of 
recognition compared with FCM-based RBF network. Failures of recognition in the 
proposed algorithm are incurred by the damage of shapes of individual identifiers in 
original images and the information loss of identifiers in the binarzation process. 
 

 
FCM-based RBF network ART2-base self-organizing 

supervised learning algorithm 

# of Epoch # of success of 
recognition # of Epoch # of success of 

recognition 
Alphabetic 

Characters(284) 236 240 
(84.5%) 221 280 

(98.5%) 
Numeric 

Characters(500) 161 422 
(84.4%) 151 487 

(97.4%) 
Table 3. Evaluation of recognition performance 

4. Conclusion 

This chapter proposes an automatic recognition system of shipping container identifiers 
using fuzzy-based noise removal method and ART2-based self-organizing supervised 
learning algorithm.  In the proposed method, after detecting and removing noises from an 
original image by using a fuzzy method, areas of identifiers are extracted. In detail, the 
performance of identifier area extraction is improved by removing noises incurring errors 
using a fuzzy method based on the feature that the color of container identifiers is white or 
black on the whole. And, individual identifiers are extracted by applying the 8-directional 
contour tracking method to extracted areas of identifiers. Experiments using 79 container 
images show that 72 areas of identifiers and 784 individual identifiers are extracted 
successfully and 767 identifiers among the extracted are recognized by the proposed 
recognition algorithm. Failures of recognition in the proposed algorithm are incurred by the 
damage of shapes of individual identifiers in original images and the information loss of 
identifiers in the binarzation process. 
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For the experiment of identifier recognition, applying the 8-directional contour tracking 
method to 72 identifier areas extracted by the proposed extraction algorithm, 284 alphabetic 
characters and 500 numeric characters are extracted. The recognition experiments are 
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In this chapter, we explore difficulties one often encounters when applying machine learning
techniques to real-world data, which frequently show skewness properties. A typical example
from industry where skewed data is an intrinsic problem is fraud detection in finance data. In
the following we provide examples, where appropriate, to facilitate the understanding of data
mining of skewed data. The topics explored include but are not limited to: data preparation,
data cleansing, missing values, characteristics construction, variable selection, data skewness,
objective functions, bottom line expected prediction, limited resource situation, parametric
optimisation, model robustness and model stability.

1. Introduction

In many contexts like in a new e-commerce website, fraud experts start investigation proce-
dures only after a user makes a claim. Rather than working reactively, it would be better for
the fraud expert to act proactively before a fraud takes place. In this e-commerce example, we
are interested in classifying sellers into legal customers or fraudsters. If a seller is involved in
a fraudulent transaction, his/her license to sell can be revoked by the e-business. Such a de-
cision requires a degree of certainty, which comes with experience. In general, it is only after
a fraud detection expert has dealt with enough complains and enough data that he/she ac-
quired a global understanding of the fraud problem. Quite often, he/she is exposed to a huge
number of cases in a short period of time. This is when automatic procedures, commonly
computer based, can step in trying to reproduce expert procedures thus giving experts more
time to deal with harder cases. Hence, one can learn from fraud experts and build a model for
fraud. Such a model requires fraud evidences that are commonly present in fraudulent behav-
ior. One of the difficulties of fraud detection is that fraudsters try to conceal themselves under
a “normal” behavior. Moreover, fraudsters rapidly change their modus operandi once it is
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discovered. Many fraud evidences are illegal and justify a more drastic measure against the
fraudster. However, a single observed indicator is often not strong enough to be considered
a proof and needs to be evaluated as one variable among others. All variables taken together
can indicate high probability of fraud. Many times, these variables appear in the literature
by the name of characteristics or features. The design of these characteristics to be used in a
model is called characteristics extraction or feature extraction.

2. Data preparation

2.1 Characteristics extraction
One of the most important tasks on data preparation is the conception of characteristics. Un-
fortunately, this depends very much on the application (See also the discussions in Section 4
and 5). For fraud modelling for instance, one starts from fraud expert experience, determine
significant characteristics as fraud indicators, and evaluates them. In this evaluation, one is
interested in measuring how well these characteristics:

• covers (is present in) the true fraud cases;

• and how clearly they discriminate fraud from non-fraud behavior.

In order to cover as many fraud cases as possible, one may verify how many of them are
covered by the characteristics set. The discrimination power of any of these characteristics
can be evaluated by their odds ratio. If the probability of the event (new characteristics) in
each of two compared classes (fraud and non-fraud in our case) are p f (first class) and pn
(second class), then the odds ratio is:

OR =
p f /(1 − p f )
pn/(1 − pn)

=
p f (1 − pn)
pn(1 − p f )

.

An odds ratio equals to 1 describes the characteristics as equally probable in both classes
(fraud and non-fraud). The more this ratio is greater/less than 1, the more likely this charac-
teristic is in the first/second class than in the other one.

2.2 Data cleansing
In many manuals on best practice in model development, a chapter on data consistency
checks, or data cleansing, is present. The main reason for this is to avoid waisting all the
effort applied in the model development stage, because of data inconsistency invalidating the
dataset in use.
Here we understand data consistency checks as being a set of expert rules to check whether
a characteristic follows an expected behaviour. These expert rules can be based on expert
knowledge or common sense. For example, a common error when filling in the date-of-birth
section in a credit card application form is to put the current year instead of the year the person
was actually born. In most countries an under sixteen year old can not have a credit card.
Therefore, an easy way of checking this inconsistency is to simply calculate the applicant’s
age and check if it falls within a valid range. With more information available, more complex
checks can be applied, such as, e.g. matching name with gender or street name with post code.
In some cases the model developer has access to reports stored in Management Information
Systems (MIS). If that is the case, it is a highly recommended idea to calculate key population
indicators and compare these to portfolio reports. For example, in a credit card industry envi-
ronment one can check the volume of applications; accept rate, decline rate and take-up rate

and others. It can also be useful to check the univariate distribution of each variable including
the percentage of outliers, missing and miscellaneous values.
Having identified the characteristics that contain errors, the next step is to somehow fix the
inconsistencies or minimise their impact in the final model. Here we list, in the form of ques-
tions, some good practices in data cleansing used by the industry that can sometimes improve
model performance, increase generalisation power and finally, but no less important, make
models less vulnerable to fraud and faults.

1. Is it possible to fix the errors by running some codes on the dataset? Sometimes wrong
values have a one-to-one mapping to the correct values. Therefore, the best strategy is
to make the change in the development dataset and to carry on with the development.
It is important that these errors are fixed for the population the model will be applied to
as well. This is because both developing and applying populations must be consistent,
otherwise fixing the inconsistency would worsen the model performance rather than
improving it;

2. Is a small number of attributes1 (less than 5%) impacting only few rows (less than 5%)?
In this case, one can do a bivariate analysis to determine if it is possible to separate these
values into a default (or fault) group. Another option is to drop the rows. However, this
tactic might turn out to be risky (see section about missing values);

3. Is the information value of the problematic attribute(s) greater than for the other at-
tributes combined? Consider dropping this characteristic and demand fixing;

4. Is it possible to allow outliers? Simply dropping them might be valid if there are few or
there are invalid values. Change their values to the appropriate boundary could also be
valid. For example, if an acceptable range for yearly income is [1,000;100,000] MU2 and
an applicant has a yearly income of 200,000 MU then it should be changed to 100,000
MU. This approach is often referred to as truncated or censored modelling Schneider
(1986).

5. Finally, in an industry environment, when an MIS is available, one can check for the
acceptance rate or number of rows to be similar to the reports? It is very common for
datasets to be corrupted after transferring them from a Mainframe to Unix or Windows
machines.

3. Data skewness

A dataset for modelling is perfectly balanced when the percentage of occurrence of each class
is 100/n, where n is the number of classes. If one or more classes differ significantly from the
others, this dataset is called skewed or unbalanced. Dealing with skewed data can be very
tricky. In the following sections we explore, based on our experiments and literature reviews,
some problems that can appear when dealing with skewed data. Among other things, the
following sections will explain the need for stratified sampling, how to handle missing values
carefully and how to define an objective function that takes the different costs for each class
into account.

1 possible values of a given characteristic
2 MU = Monetary Units.
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an applicant has a yearly income of 200,000 MU then it should be changed to 100,000
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5. Finally, in an industry environment, when an MIS is available, one can check for the
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is 100/n, where n is the number of classes. If one or more classes differ significantly from the
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3.1 Missing values
Missing values are of little importance when dealing with balanced data, but can become
extremely harmful or beneficial when dealing with skewed data. See how the example below
looks harmful at first glance, but indeed exposes a very powerful characteristic.
Table 1 shows an example of a characteristic called Transaction Amount. By looking at the
first line of the table one may conclude that the number of missing values is small (1.98%)
and decide not to investigate any further. Breaking it down into fraudulent and legitimate
transactions, one can see that 269 (32.5%) data items whose values are missings are frauds,
which is nearly 9 times bigger than the overall fraud rate in our dataset (1,559/41,707 = 3.74%
see Table 2).

Population # transaction # missing % missing
Total 41707 825 1.98%
Fraud 1559 269 17.26%
Legitimate 40148 556 1.39%

Table 1. Fraud/legitimate distribution

Investigating even further, by analysing the fraud rates by ranges as shown in table 2, one
can see that the characteristic being analysed really helps to predict fraud; on the top of this,
missing values seem to be the most powerful attribute for this characteristic.

Trans. amount # frauds # trans. Fraud rate
Missings 269 825 32.61%
0,100 139 14639 0.95%
101,500 235 10359 2.27%
501,1000 432 8978 4.81%
1001,5000 338 4834 6.99%
5001,+inf 146 2072 7.05%
Total 1559 41707 3.74%

Table 2. Transaction amount bivariate

When developing models with balanced data, in most cases one can argue that it is good prac-
tice to avoid giving prediction to missing values (as a separate attribute or dummy), especially,
if this attribute ends up with dominating the model. However, when it comes to unbalanced
data, especially with fraud data, some specific value may have been intentionally used by the
fraudster in order to bypass the system’s protection. In this case, one possible explanation
could be a system failure, where all international transaction are not being correctly currency
converted when passed to the fraud prevention system. This loophole may have been found
by some fraudster and exploited. Of course, this error would have passed unnoticed had one
not paid attention to any missing or common values in the dataset.

4. Derived characteristics

New or derived characteristics construction is one of, if not the, most important part of mod-
elling. Some important phenomena mapped in nature are easily explained using derived
variables. For example, in elementary physics speed is a derived variable of space over time.
In data mining, it is common to transform date of birth into age or, e.g., year of study into
primary, secondary, degree, master, or doctorate. Myriad ways exist to generate derived char-
acteristics. In the following we give three typical examples:

1. Transformed characteristics: transform characteristics to gain either simplicity or general-
isation power. For example, date of birth into age, date of starting a relationship with a
company into time on books, and years of education into education level;

2. Time series characteristics: a new characteristic built based on a group of historical months
of a given characteristic. Examples are average balance of a bank account within the last
6 months, minimum balance of a bank account within the last 12 months, and maximum
days in arrears3 over the last 3 months;

3. Interaction: variable combining two or more different characteristics (of any type) in
order to map interesting phenomena. For example, average credit limit utilization =
average utilization / credit limit.

5. Categorisation (grouping)

Categorisation (discretising, binning or grouping) is any process that can be applied to a char-
acteristic in order to turn it into categorical values Witten & Franku (2005). For example, let
us suppose that the variable age ranges from 0 to 99 and all values within this interval are
possible. A valid categorisation in this case could be:

1. category 1: if age is between 1 and 17;

2. category 2: if age is between 18 and 30;

3. category 3: if age is between 31 and 50;

4. category 4: if age is between 51 and 99.

Among others, there are three main reasons for categorising a characteristic: firstly, to increase
generalisation power; secondly, to be able to apply certain types of methods, such as, e.g.
a Generalised Linear Model4 (GLM) Witten & Franku (2005), or a logistic regression using
Weight of Evidence5 (WoE) formulations Agterberg et al. (1993); thirdly, to add stability to the
model by getting rid of small variations causing noise. Categorisation methods include:

1. Equal width: corresponds to breaking a characteristic into groups of equal width. In the
age example we easily break age into 5 groups of 20 decimals in each: 0-19, 20-39, 40-59,
60-79, 80-99.

2. Percentile: this method corresponds to breaking the characteristic into groups of equal
volume, or percentage, of occurrences. Note that in this case groups will have different
widths. In some cases breaking a characteristic into many groups may not be possible
because occurrences are concentrated. A possible algorithm in pseudo code to create
percentile groups is:

Nc <- Number of categories to be created
Nr <- Number of rows
Size <- Nr/Nc
Band_start [0] <- Minimum (Value (characteristic[0..Nr]))
//Dataset needs to be sorted by the characteristic to be grouped
For j = 1 .. Nc {
For i = 1 .. Size {

3 Arrears is a legal term for a type of debt which is overdue after missing an expected payment.
4 One example of this formulation is logistic regression using dummy input variables
5 This formulation replaces the original characteristic grouped attribute for its weight of evidence
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volume, or percentage, of occurrences. Note that in this case groups will have different
widths. In some cases breaking a characteristic into many groups may not be possible
because occurrences are concentrated. A possible algorithm in pseudo code to create
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Nr <- Number of rows
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//Dataset needs to be sorted by the characteristic to be grouped
For j = 1 .. Nc {
For i = 1 .. Size {

3 Arrears is a legal term for a type of debt which is overdue after missing an expected payment.
4 One example of this formulation is logistic regression using dummy input variables
5 This formulation replaces the original characteristic grouped attribute for its weight of evidence



New Advances in Machine Learning178

Value_end <- Value(characteristic[i+Nc*Size])
}
Band_end[j] <- Value_end
Band_start[j+1] <- Value_end
}

3. Bivariate grouping: this method corresponds to using the target variable to find good
breaking points for the ranges of each group. It is expected that, in doing so, groups
created using a bivariate process have a lower drop in information value, whilst it can
improve the generalisation by reducing the number of attributes. One can do this in a
spreadsheet by recalculating the odds and information value every time one collapses
neighbouring groups with either similar odds, non-monotonic odds or a too small pop-
ulation percentage.

Next, we present one possible process of grouping the characteristic age using a bivariate
grouping analysis. For visual simplicity the process starts with groups of equal width, each
containing 10 units (see Table 3). The process consists of eliminating intervals without mono-
tonic odds, grouping similar odds and guaranteeing a minimal percentage of individuals in
each group.

Age goods bads Odds %tot
0-9 100 4 25.00 1.83%

10-19 200 10 20.00 3.70%
20-29 600 50 12.00 11.46%
30-39 742 140 5.30 15.55%
40-49 828 160 5.18 17.42%
50-59 1000 333 3.00 23.50%
60-69 500 125 4.00 11.02%
70-79 300 80 3.75 6.70%
80-89 200 100 2.00 5.29%
90-99 100 100 1.00 3.53%
Total 4570 1102 4.15 100.00%

Table 3. Age bivariate step 1/4

Age goods bads Odds %tot
0-9 100 4 25.00 1.83%

10-19 200 10 20.00 3.70%
20-29 600 50 12.00 11.46%
30-39 742 140 5.30 15.55%
40-49 828 160 5.18 17.42%
50-79 1800 538 3.35 41.22%
80-89 200 100 2.00 5.29%
90-99 100 100 1.00 3.53%
Total 4570 1102 4.15 100.00%

Table 4. Age bivariate step 2/4

The result of the first step, eliminating intervals without monotonic odds can be seen in Ta-
ble 4. Here bands 50-59 (odds of 3.00), 60-69 (odds of 4.00) and 70-79 (odds of 3.75) have been
merged, as shown in boldface. One may notice that merging bands 50-59 and 60-69 would

Age goods bads Odds %tot
0-9 100 4 25.00 1.83%

10-19 200 10 20.00 3.70%
20-29 600 50 12.00 11.46%
30-49 1575 300 5.23 32.97%
50-79 1800 538 3.35 41.22%
80-89 200 100 2.00 5.29%
90-99 100 100 1.00 3.53%
Total 4570 1102 4.15 100.00%

Table 5. Age bivariate step 3/4

result in a group with odds of 3.28; hence resulting in the need to merge with band 70-79 to
yield monotonic odds.
By using, for example, 0.20 as the minimum allowed odds difference, Table 5 presents the re-
sult of step two where bands 30-39 (odds of 5.30) and 40-49 (odds of 5.18) have been merged.
This is done to increase model stability. One may notice that odds retrieved from the devel-
opment become expected odds in a future application of the model. Therefore, these values
will vary around the expectation. By grouping these two close odds, one tries to avoid that a
reversal in odds may happen by pure random variation.

Age goods bads Odds %tot
0-19 300 14 21.43 5.54%

20-29 600 50 12.00 11.46%
30-49 1575 300 5.23 32.97%
50-79 1800 538 3.35 41.22%
80-89 200 100 2.00 5.29%
90-99 100 100 1.00 3.53%
Total 4570 1102 4.15 100.00%

Table 6. Age bivariate step 4/4

For the final step, if we assume 2% to be be the minimum allowed percentage of the population
in each group. This forces band 0-9 (1.83% of total) to be merged with one of its neighbours;
in this particular case, there is only the option to merge with band 10-19. Table 6 shows the
final result of the bivariate grouping process after all steps are finished.

6. Sampling

As computers become more and more powerful, sampling, to reduce the sample size for
model development, seems to be losing attention and importance. However, when dealing
with skewed data, sampling methods remain extremely important Chawla et al. (2004); Elkan
(2001). Here we present two reasons to support this argument.
First, to help to ensure that no over-fitting happens in the development data, a sampling
method can be used to break the original dataset into training and holdout samples. Fur-
thermore, a stratified sampling can help guarantying that a desirable factor has similar per-
centage in both training and holdout samples. In our work Gadi et al. (2008b), for example,
we executed a random sampling process to select multiple splits of 70% and 30%, as training
and holdout samples. However, after evaluating the output datasets we decided to redo the
sampling process using stratified sampling by fraud/legitimate flag.
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in this particular case, there is only the option to merge with band 10-19. Table 6 shows the
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As computers become more and more powerful, sampling, to reduce the sample size for
model development, seems to be losing attention and importance. However, when dealing
with skewed data, sampling methods remain extremely important Chawla et al. (2004); Elkan
(2001). Here we present two reasons to support this argument.
First, to help to ensure that no over-fitting happens in the development data, a sampling
method can be used to break the original dataset into training and holdout samples. Fur-
thermore, a stratified sampling can help guarantying that a desirable factor has similar per-
centage in both training and holdout samples. In our work Gadi et al. (2008b), for example,
we executed a random sampling process to select multiple splits of 70% and 30%, as training
and holdout samples. However, after evaluating the output datasets we decided to redo the
sampling process using stratified sampling by fraud/legitimate flag.
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Second, to improve the model prediction, one may apply an over- or under- sampling pro-
cess to take the different cost between classes into account. Cost-sensitive procedure Elkan
(2001) replicates (oversampling) the minority (fraud) class according to its cost in order to bal-
ance different costs for false positives and false negatives. In Gadi et al. (2008a) we achieved
interesting results by applying a cost-sensitive procedure.
Two advantages of a good implementation of a cost-sensitive procedure are: first, it can enable
changes in cut-off to the optimal cut-off, For example, in fraud detection, if the cost tells one,
a cost-sensitive procedure will consider a transaction with as little as 8% of probability of
fraud as a potential fraud to be investigated; second, if the cost-sensitive procedure considers
cost per transaction, such an algorithm may be able to optimise decisions by considering the
product [probability of event] x [value at risk], and decide on investigating those transactions
in which this product is bigger.

7. Characteristics selection

Characteristics selection, also known as feature selection, variable selection, feature reduction,
attribute selection or variable subset selection, is commonly used in machine learning and sta-
tistical techniques to select a subset of relevant characteristics for the building of more robust
models Witten & Franku (2005).
Decision trees do characteristics selection as part of their training process when selecting only
the most powerful characteristics in each subpopulation, leaving out all weak or highly cor-
related characteristics. Bayesian nets link different characteristics by cause and effect rules,
leaving out non-correlated characteristics Charniak (1991). Logistic Regression does not use
any intrinsic strategy for removing weak characteristics; however, in most implementations
methods such as forward, backward and stepwise are always available. In our tests, we have
applied a common approach in the bank industry that is to consider only those characteristics
with information value greater than a given percentage threshold.

8. Objective functions

When defining an objective function, in order to compare different models, we found in our
experiments that two facts are especially important:

1. We have noticed that academia and industry speak in different languages. In the aca-
demic world, measures such as Kolmogorov Smirnov (KS) Chakravarti et al. (1967)
or Receiver Operating Characteristic (ROC curve) Green & Swets (1966) are the most
common; in industry, on the other hand, rates are more commonly used. In the fraud
detection area for example it is common to find measures such as hit rate (confidence)
and detection rate (cover). Hit rate and detection rate are two different dimensions and
they are not canonical. To optimise a problem with an objective having two outcomes
is not a simple task Trautmann & Mehnen (2009). In our work in fraud detection we
avoided this two-objective function by calculating one single outcome value: the total
cost of fraud;

2. In an unbalanced environment it is common to find that not only the proportion be-
tween classes differs, but also the cost between classes. For example, in the fraud de-
tection environment, the loss by fraud when a transaction is fraudulent is much bigger
than the cost to call a customer to confirm whether he/she did or did not do the trans-
action.

9. Bottom line expected prediction

The problem of finding the best model can be computationally expensive, as there are many
parameters involved in such a search. For this reason, it is very common for model developers
to get satisfied with suboptimal models. A question equally difficult to answer, in general, is
how far we are from an optimum. We do not intend to respond to this question here; what we
want to address is a list of ways to help the model developer to estimate a minimum acceptable
performance before getting close to the end of the model development. In our fraud analysis
we found two good options for estimating a bottom line for expected suboptimal cost: a first
option could be the cost resulting from a Naı̈ve Bayes model. It is important to notice that
Naı̈ve Bayes does not need any grouping, characteristics selection or parameter tuning; a
second option could be to consider the cost from a first “quick and dirty” model developed
using the method chosen by the model developer.

10. Limited resource situation

Many real-world application present limited resource problems. This can make the decision
of what is the best model different compared to a model without restrictions. In a hospital,
for example, there may be a limited number of beds for patients; in a telephone costumer
service facility, there may be a limited number of attendants; in the fraud detection world the
number of people available to handle manual transactions is in general fixed; and the number
of transactions each member of fraud detection can handle per day is also fixed due to practical
reasons. In such applications, being aware of the capacity rate becomes very important. It is
also extremely important for the model outcome to indicate the probability6 of the event rather
than providing a simple yes/no response. By having the outcome as a probability, models
can be compared using for example, cutoffs that keep the selecting rate equal to the capacity
rate. In fraud detection, comparing models detection rate and hit rate fixing for example 1000
transaction to be investigated.

11. Parametric optimisation

Once we have the data and the optimisation criteria, the following questions have to be an-
swered:

Which classification method is recommended for producing the best model for
any given application?
Which parameter set should be used?

For instance, we can apply classification methods such as: Neural Networks (NN), Bayesian
Networks (BN), Naı̈ve Bayes (NB), Artificial Immune Systems (AIS) and Decision Trees (DT),
Support Vector Machines (SVM), Logistic Regression and others. In fact, there is not a final
and unique answer to this first question. Support Vector Machines, for instance, is known
to be very effective for data with a very large number of characteristics and is reported to
perform well in categorisation problems in Information Retrieval. However, our experience
with SVM on fraud data did not meet our expectations. For many parameter sets, the method
did not even converge to a final model and this behaviour for unbalanced data is reported to
not be uncommon.

6 Or be possible to transform it into a probability.
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can be compared using for example, cutoffs that keep the selecting rate equal to the capacity
rate. In fraud detection, comparing models detection rate and hit rate fixing for example 1000
transaction to be investigated.
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For instance, we can apply classification methods such as: Neural Networks (NN), Bayesian
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Support Vector Machines (SVM), Logistic Regression and others. In fact, there is not a final
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In order to assess methods many factors can be used including the chosen optimisation crite-
ria, scalability, time for classification and time spent in training, and sometimes more abstract
criteria as time to understand how the method works. Most of the time, when a method is
published, or when an implementation is done, the method depends on parameter choices
that may influence the final results significantly. Default parameters, in general, are a good
start. However, most of the time, they are far from producing the best model. This comprises
with our experience with many methods in many different areas of Computer Science. This is
particular true for classification problems with skewed data.
Quite often we see comparisons against known methods where the comparison is done by
applying a special parameter variation strategy (sometimes a parameter optimisation) for the
chosen method while not fairly conducing the same procedure for the other methods. In
general, for the other methods, default parameters, or a parameter set published in some
previous work is used. Therefore, it is not a surprise that the new proposed method wins. At
a first glance, the usage of the default parameter set may seem to be fair and this bias is often
reproduced in publications. However, using default sets can be biased by the original training
set and, thus, not be fair.
Parameter optmisation takes time and is rarely conduced. For a fair comparison, we argue that
one has to fine tune the parameters for all compared method. This can be done, for instance,
via an exhaustive search of the parameter space if this search is affordable, or some kind of
sampling like in Genetic Algorithm (GA)7 (see Figure 1). Notice, that the final parameter set
cannot be claimed to be optimal in this case.
Unfortunately, this sampling procedure is not as easy as one may suppose. There is not a sin-
gle best universal optimisation algorithm for all problems (No Free Lunch theorem - Wolpert
and Macready 1997 Wolpert & Macready (1997)). Even the genetic algorithm scheme as shown
in Figure 1 might require parameter adjustment. According to our experience, we verified
that a simple mistake in the probability distribution computation may drive the results to
completely different and/or misleading results. A good genetic algorithm requires expertise,
knowledge about the problem that should be optimised by the GA, an intelligent design, and
resources. The more, the better. These considerations also imply that comparisons involv-
ing methods with suboptimal parameter sets depend very much on how well each parameter
space sampling was conduced.

12. Robustness of parameters

After the parameter optimisation has been conducted, it can be advantageous or desirable to
have the optimised parameters independent from the training set, i.e. they can be applied to
different datasets of the same problem. In this case we can call this parameter set robust.
When the parameter are not robust, the optimisation process is not as strong as expected since
the obtained optimised parameter set has no or little generalisation power. In this case, in our
experiments, we found that it is a good approach to sacrifice some prediction power in order
to gain robustness in the parameter set. Note that a procedure using n-fold cross validation
could lead to a parameter set that is more independent from a dataset. However, we choose
to present a different approach which also generates robust parameter sets with more control
of what is happening during the process. This procedure is based on repeated sampling from
the development dataset into training and holdout samples. Then, we applied parameter

7 One could also use some kind of Monte Carlo, Grid sampling or Multiresolution alternatives.
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Fig. 1. Genetic Algorithm for parameters optimisation. We start with an initial pool of e.g.
50 random individuals having a certain fitness, followed by e.g. 20 Genetic Algorithm (GA)
generations. Each GA generation combines two randomly selected candidates among the best
e.g. 15 from previous generation. This combination performs: crossover, mutation, random
change or no action for each parameter independently. As the generation goes by, the chance
of no action increases. In the end, one may perform a local search around the optimised
founded by GA optimisation. Retrieved from Gadi et al. Gadi et al. (2008b).

optimisation and choose the set of parameters which is the best in average over all splits at
the same time.
In our work, in order to rewrite the optimisation function that should be used in a GA algo-
rithm, we have used a visualization procedure with computed costs for many equally spaced
parameter sets in the parameter space. After having defined a good optimisation function,
due to time constraints, we did not proceed with another GA optimisation, but we reused
our initial runs used in the visualization, with the following kind of multiresolution optimisa-
tion Kim & Zeigler (1996) (see Figure 2):
• we identified those parameters that have not changed, and we frozen these values for these

respective parameters;
• with any other parameter, we screened the 20 best parameter sets for every split and iden-

tified a reasonable range;
• for all non-robust parameters, we chose an integer step s so the search space did not explode;



Data mining with skewed data 183

In order to assess methods many factors can be used including the chosen optimisation crite-
ria, scalability, time for classification and time spent in training, and sometimes more abstract
criteria as time to understand how the method works. Most of the time, when a method is
published, or when an implementation is done, the method depends on parameter choices
that may influence the final results significantly. Default parameters, in general, are a good
start. However, most of the time, they are far from producing the best model. This comprises
with our experience with many methods in many different areas of Computer Science. This is
particular true for classification problems with skewed data.
Quite often we see comparisons against known methods where the comparison is done by
applying a special parameter variation strategy (sometimes a parameter optimisation) for the
chosen method while not fairly conducing the same procedure for the other methods. In
general, for the other methods, default parameters, or a parameter set published in some
previous work is used. Therefore, it is not a surprise that the new proposed method wins. At
a first glance, the usage of the default parameter set may seem to be fair and this bias is often
reproduced in publications. However, using default sets can be biased by the original training
set and, thus, not be fair.
Parameter optmisation takes time and is rarely conduced. For a fair comparison, we argue that
one has to fine tune the parameters for all compared method. This can be done, for instance,
via an exhaustive search of the parameter space if this search is affordable, or some kind of
sampling like in Genetic Algorithm (GA)7 (see Figure 1). Notice, that the final parameter set
cannot be claimed to be optimal in this case.
Unfortunately, this sampling procedure is not as easy as one may suppose. There is not a sin-
gle best universal optimisation algorithm for all problems (No Free Lunch theorem - Wolpert
and Macready 1997 Wolpert & Macready (1997)). Even the genetic algorithm scheme as shown
in Figure 1 might require parameter adjustment. According to our experience, we verified
that a simple mistake in the probability distribution computation may drive the results to
completely different and/or misleading results. A good genetic algorithm requires expertise,
knowledge about the problem that should be optimised by the GA, an intelligent design, and
resources. The more, the better. These considerations also imply that comparisons involv-
ing methods with suboptimal parameter sets depend very much on how well each parameter
space sampling was conduced.

12. Robustness of parameters

After the parameter optimisation has been conducted, it can be advantageous or desirable to
have the optimised parameters independent from the training set, i.e. they can be applied to
different datasets of the same problem. In this case we can call this parameter set robust.
When the parameter are not robust, the optimisation process is not as strong as expected since
the obtained optimised parameter set has no or little generalisation power. In this case, in our
experiments, we found that it is a good approach to sacrifice some prediction power in order
to gain robustness in the parameter set. Note that a procedure using n-fold cross validation
could lead to a parameter set that is more independent from a dataset. However, we choose
to present a different approach which also generates robust parameter sets with more control
of what is happening during the process. This procedure is based on repeated sampling from
the development dataset into training and holdout samples. Then, we applied parameter

7 One could also use some kind of Monte Carlo, Grid sampling or Multiresolution alternatives.

Initial Population 
(50 randomly executions)

GA – start
generation pool

GA – Best Parents
(15 parameter sets 
with smaller costs)

Cross Over

Children
(15 new children)

Mutation

20 generations? 

Local Search

around the best

parameter set

new population



Fig. 1. Genetic Algorithm for parameters optimisation. We start with an initial pool of e.g.
50 random individuals having a certain fitness, followed by e.g. 20 Genetic Algorithm (GA)
generations. Each GA generation combines two randomly selected candidates among the best
e.g. 15 from previous generation. This combination performs: crossover, mutation, random
change or no action for each parameter independently. As the generation goes by, the chance
of no action increases. In the end, one may perform a local search around the optimised
founded by GA optimisation. Retrieved from Gadi et al. Gadi et al. (2008b).

optimisation and choose the set of parameters which is the best in average over all splits at
the same time.
In our work, in order to rewrite the optimisation function that should be used in a GA algo-
rithm, we have used a visualization procedure with computed costs for many equally spaced
parameter sets in the parameter space. After having defined a good optimisation function,
due to time constraints, we did not proceed with another GA optimisation, but we reused
our initial runs used in the visualization, with the following kind of multiresolution optimisa-
tion Kim & Zeigler (1996) (see Figure 2):
• we identified those parameters that have not changed, and we frozen these values for these

respective parameters;
• with any other parameter, we screened the 20 best parameter sets for every split and iden-

tified a reasonable range;
• for all non-robust parameters, we chose an integer step s so the search space did not explode;



New Advances in Machine Learning184

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

1st execution 2nd execution 3rd execution

Min_1

Min_2

Min_final

Fig. 2. An example of the multiresolution optimisation that was applied in order to find robust
parameters. In this example one can see two parameters in the search space and three steps of
this multiresolution optimisation. For the parameter represented in horizontal line, the search
space in first step ranges from 10 to 90 with step size 20 and the minimum was found for 30.
In the second step, the scale ranges from 10 to 50 with step size 5 and the minimum was found
for 40. In third step, it ranges from 35 to 45, with step size 1, which is equivalent to a local
exhaustive search in this neighborhood. Retrieved from Gadi et al. Gadi et al. (2008a).

• we evaluated the costs for all possible combinations according to the search space defined
above and found the parameter set P that brings the minimum average cost among all the
different used splits;

• if the parameter set P was at the border of the search space, we shifted this search space by
one step in the direction of this border and repeated last step until we found this minimum
P in the inner area of the search space;

• we zoomed the screening in on the neighborhood of P, refined steps s, and repeated the
process from then on until no refinement was possible.

13. Model stability

In industry, generally the aim of modelling is to apply a model to a real situation and to gener-
ate profit, either by automating decision making where a model was not previously available
or replacing old models by a new and improved one. For doing so, most model development
processes rely on past information for their training. Therefore, it is very important to be able
to assess whether or not a model is still fit for propose when it is in use, and to have a set of

actions to expand the model’s life span. In this section we explore advantages of using out-of-
time samples, monitoring reports, stability by vintage, vintage selection and how to deal with
different scales over time.

13.1 Out-of-time:
an Out-Of-Time sample (OOT) is any sample of the same phenomena used in the model de-
velopment that is not in the development window8, historic vintages or observation point
selected for development. In most cases in reality a simple split of the development sample
into training and testing data cannot identify a real over-fitting of the model Sobehart et al.
(2000). Therefore, the most appropriated approach to identify this change is either to select a
vintage or observation point posterior to the development window or select this previously to
the development window. The second approach gives the extra advantage of using the most
up-to-date information for the development.

13.2 Monitoring reports:
the previous action, OOT, should be best done before the actual model implementation; after
that, it becomes important to evaluate whether the implemented model still delivers a good
prediction. For this purpose, it is crucial to create a set of period based monitoring reports to
track the model’s performance and stability over time.

13.3 Stability by vintage:
stability by vintage corresponds to breaking the development sample down by time within
the development window and evaluate the model’s performance in all of the different peri-
ods within the data. For example, if one has information collected from January 08 to De-
cember 08, a good stability by vintage analysis would be to evaluate the model’s performance
over each month of 2008. This tends to increase the chance of a model to be stable after its
implementation.

13.4 Vintage selection:
many phenomena found in nature, and even in human behaviour, repeat themselves year af-
ter year in a recurrent manner; this is known as seasonality. Choosing a development window
from a very atypical month of the year can be very misleading; in credit cards, for example,
choosing only December as the development time window can lead to overestimation of ex-
pected losses since this is the busiest time of the year. Two approaches intend to mitigate this
problem. Both approaches are based on selecting the broadest development window possi-
ble. One common window size is 12 months, allowing the window to cover the whole year.
Please notice, there is no need to fix the start of the window to any particular month. The first
approach corresponds to simply develop the model with this pool of observation points; it is
expected for the model to be an average model that will work throughout the year. A second
approach is to introduce a characteristic indicating the “month of the year” the information
was collected from, or any good combination of it, and then to develop the model. As a result,
one would expect a model that adjusts better to each observation point in the development
window.

8 Here we understand development window as being the period from where the training samples were
extracted. This can be hours, days, months, years, etc.



Data mining with skewed data 185

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

1st execution 2nd execution 3rd execution

Min_1

Min_2

Min_final

Fig. 2. An example of the multiresolution optimisation that was applied in order to find robust
parameters. In this example one can see two parameters in the search space and three steps of
this multiresolution optimisation. For the parameter represented in horizontal line, the search
space in first step ranges from 10 to 90 with step size 20 and the minimum was found for 30.
In the second step, the scale ranges from 10 to 50 with step size 5 and the minimum was found
for 40. In third step, it ranges from 35 to 45, with step size 1, which is equivalent to a local
exhaustive search in this neighborhood. Retrieved from Gadi et al. Gadi et al. (2008a).

• we evaluated the costs for all possible combinations according to the search space defined
above and found the parameter set P that brings the minimum average cost among all the
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• if the parameter set P was at the border of the search space, we shifted this search space by
one step in the direction of this border and repeated last step until we found this minimum
P in the inner area of the search space;

• we zoomed the screening in on the neighborhood of P, refined steps s, and repeated the
process from then on until no refinement was possible.
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ate profit, either by automating decision making where a model was not previously available
or replacing old models by a new and improved one. For doing so, most model development
processes rely on past information for their training. Therefore, it is very important to be able
to assess whether or not a model is still fit for propose when it is in use, and to have a set of

actions to expand the model’s life span. In this section we explore advantages of using out-of-
time samples, monitoring reports, stability by vintage, vintage selection and how to deal with
different scales over time.

13.1 Out-of-time:
an Out-Of-Time sample (OOT) is any sample of the same phenomena used in the model de-
velopment that is not in the development window8, historic vintages or observation point
selected for development. In most cases in reality a simple split of the development sample
into training and testing data cannot identify a real over-fitting of the model Sobehart et al.
(2000). Therefore, the most appropriated approach to identify this change is either to select a
vintage or observation point posterior to the development window or select this previously to
the development window. The second approach gives the extra advantage of using the most
up-to-date information for the development.

13.2 Monitoring reports:
the previous action, OOT, should be best done before the actual model implementation; after
that, it becomes important to evaluate whether the implemented model still delivers a good
prediction. For this purpose, it is crucial to create a set of period based monitoring reports to
track the model’s performance and stability over time.

13.3 Stability by vintage:
stability by vintage corresponds to breaking the development sample down by time within
the development window and evaluate the model’s performance in all of the different peri-
ods within the data. For example, if one has information collected from January 08 to De-
cember 08, a good stability by vintage analysis would be to evaluate the model’s performance
over each month of 2008. This tends to increase the chance of a model to be stable after its
implementation.

13.4 Vintage selection:
many phenomena found in nature, and even in human behaviour, repeat themselves year af-
ter year in a recurrent manner; this is known as seasonality. Choosing a development window
from a very atypical month of the year can be very misleading; in credit cards, for example,
choosing only December as the development time window can lead to overestimation of ex-
pected losses since this is the busiest time of the year. Two approaches intend to mitigate this
problem. Both approaches are based on selecting the broadest development window possi-
ble. One common window size is 12 months, allowing the window to cover the whole year.
Please notice, there is no need to fix the start of the window to any particular month. The first
approach corresponds to simply develop the model with this pool of observation points; it is
expected for the model to be an average model that will work throughout the year. A second
approach is to introduce a characteristic indicating the “month of the year” the information
was collected from, or any good combination of it, and then to develop the model. As a result,
one would expect a model that adjusts better to each observation point in the development
window.

8 Here we understand development window as being the period from where the training samples were
extracted. This can be hours, days, months, years, etc.
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13.5 Different scale over time:
Another common problem applies to the situation where characteristic values fall outside
the training sample boundaries or some unknown attributes occur. To reduce the impact of
this problem, one can always leave the groups with the smallest and biggest boundaries as
negative infinite and positive infinite, respectively, for example, changing [0,10];[11,20];[21,30]
to ]−∞,10];[11,20];[21,+∞[. Furthermore, undefined values could always be assigned to a
default group. For example, if for a numeric characteristic a non-numeric value ocurrs it
could be assigned to a default group.

14. Final Remarks

This work provided a brief introduction to pratical problem solving for machine learning with
skewed data sets. Classification methods are generally not designed to cope with skewed data,
thus, various action have to be taken when dealing with imbalanced data sets. For a reader
looking for more information about the field we can recommend a nice editorial by Chawla et
al. ? and three conference proceedings Chawla et al. (2003); Dietterich et al. (2000); Japkowicz
(2000). In addition, good algorithm examples can be found in Weka Witten & Franku (2005)
and SAS Delwiche & Slaughter (2008).
Perhaps, most solutions that deal with skewed data do some sort of sampling (e.g: with un-
dersampling, oversampling, cost sensitive training Elkan (2001), etc.). These contributions are
effective Gadi et al. (2008a) and quite well known nowadays.
This text provides recommendations for practitioners who are facing data mining problems
due to skewed data.
Details on the experiments can be found at Gadi et al. (2008b) and Gadi et al. (2008a), which
presents an application of Artificial Immune Systems on credit card fraud detection.
Finally, another subject explored in this work was the importance of parametric optimization
for chosing a good classification method for skewed data. We also suggested a proceedure for
parametric optimization.
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1. Introduction   
  

The overwhelming amount of data that is available nowadays in any field of research poses 
new problems for machine learning methods. This huge amount of data makes most of the 
existing algorithms inapplicable to many real-world problems. Two approaches have been 
used to deal with this problem: scaling up machine learning algorithms and data reduction. 
Nevertheless, scaling up a certain algorithm is not always feasible. On the other hand, data 
reduction consists of removing from the data missing, redundant and/or erroneous data to 
get a tractable amount of data. The most common methods for data reduction are instance 
selection and feature selection.  
However, these algorithms for data reduction have the same scaling problem they are trying 
to solve. For example, in the best case, most existing instance selection algorithms are

 2O n , n being the number of instances. For huge problems, with hundreds of thousands or 

even millions of instances, these methods are not applicable. The same happens with feature 
selection algorithms. 
The alternative is scaling up the machine learning algorithm itself. In the best case, this is an 
arduous task, and in the worst case and impossible one. In this chapter we present a new 
paradigm for scaling up machine learning algorithms based on the philosophy of divide-
and-conquer. One natural way of scaling up a certain algorithm is dividing the original 
problem into several simpler subproblems and applying the algorithm separately to each 
subproblem. In this way we might scale up instance selection dividing the original dataset 
into several disjoint subsets and performing the instance selection process separately on 
each subset. However, this method does not work well, as the application of the algorithm 
to a subset suffers from the partial knowledge it has of the dataset. However, if we join this 
divide-and-conquer approach with the basis of the construction of ensembles of classifiers, 
the combination of weak learners into a strong one, we obtain a very powerful and fast 
method, applicable to almost any machine learning algorithm. This method can be applied 
in different ways. In this chapter we propose two algorithms, recursive divide-and-conquer 
and democratization, that are able to achieve very good performance and a dramatic 
reduction in the execution time of the instance selection algorithms. 
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We will describe these methods and we will show how they can achieve very good results 
when applied to instance selection. Furthermore, the methodology is applicable to other 
machine learning algorithms, such as feature selection and cluster analysis.  
Instance selection (Liu & Motoda, 2002) consists of choosing a subset of the total available 
data to achieve the original purpose of the data mining application as if the whole data were 
used. Different variants of instance selection exist. Many of the approaches are based on 
some form of sampling (Cochran, 1997) (Kivinen & Mannila, 1994). There are other more 
modern methods that are based on different principles, such as, Modified Selective Subset 
(MSS) (Barandela et al., 2005), entropy-based instance selection (Son & Kim, 2006), 
Intelligent Multiobjective Evolutionary Algorithm (IMOEA) (Chen et al., 2005), and 
LVQPRU method (Li et al., 2005). 
The problem of instance selection for instance based learning can be defined as (Brighton & 
Mellish, 2002) “the isolation of the smallest set of instances that enable us to predict the class 
of a query instance with the same (or higher) accuracy than the original set”. It has been 
shown that different groups of learning algorithms need different instance selectors in order 
to suit their learning/search bias (Brodley, 1995). This may render many instance selection 
algorithm useless, if their philosophy of design is not suitable to the problem at hand. 
We can distinguish two main models of instance selection (Cano et al., 2003): instance 
selection as a method for prototype selection for algorithms based on prototypes (such as k-
Nearest Neighbors) and instance selection for obtaining the training set for a learning 
algorithm that uses this training set (such as decision trees or neural networks). This chapter 
is devoted to the former methods. 
Regarding complexity, in the best case, most existing instance selection algorithms are of 

efficiency  2O n , n being the number of instances. For huge problems, with hundreds of 

thousands or even millions of instances, these methods are not applicable. Trying to develop 
algorithms with a lower efficiency order is likely to be a fruitless search. Obtaining the 
nearest neighbor of a given instance is  O n . To test whether removing an instance affects 
the accuracy of the nearest neighbor rule, we must measure the effect on the other instances 
of the absence of the removed one. Measuring this effect involves recalculating, directly or 

indirectly, the nearest neighbors of the instances. The result is a process of  2O n . In this 

way, the attempt to develop algorithms of an efficiency order below this bound is not very 
promising. 
Thus, the alternative is reducing the size n of the set to which instance selection algorithms 
are applied. In the construction of ensembles of classifiers the problem of learning from 
huge datasets has been approached by means of learning many classifiers from small 
disjoint subsets (Chawla et al., 2004). In that paper, the authors showed that it is also 
possible to learn an ensemble of classifiers from random disjoint partitions of a dataset, and 
combine predictions from all those classifiers to achieve high classification accuracies. They 
applied their method to huge datasets with very good results. Furthermore, the usefulness 
of applying instance selection to disjoint subsets has also been shown in (García-Pedrajas et 
al., 2009). In that work, a cooperative evolutionary algorithm was used. The training set was 
divided into several disjoint subsets and an evolutionary algorithm was performed on each 
subset of instances. The fitness of the individuals was evaluated only taking into account the 
instances in the subset. To account for the global view needed by the algorithm a global 

population was used. This method is scalable to medium/large problems but cannot be 
applied to huge problems. Zhu & Wu (2006) also used disjoint subsets in a method for 
ranking representative instances. 
Following this idea, we will present in this chapter two approaches for scaling up instance 
selection algorithms that are based on a divide-and-conquer approach. The presented 
methods are able to achieve very good performance with a drastic reduction in the time 
needed for the execution of the algorithms. The general idea underlying this work is 
dividing the original dataset into subsets and performing the instance selection process in 
each subset separately. Then, we must find a method for combining the separate 
applications of the instance selection algorithm to a final global result. 
The rest of this paper is organized as follows: Section 2 revised some related work; Section 3 
describes in depth our proposal; Section 4 shows the experiments performed with our 
methods; and finally Section 5 states the conclusions of our work. 

 
2. Related work 
 

As stated in the previous section, scaling up instance selection algorithms is a very relevant 
issue. The usefulness of applying instance selection to disjoint subsets has also been shown 
in (García-Pedrajas et al., 2009). In this work a cooperative evolutionary algorithm is used. 
Several evolutionary algorithms are performed on disjoint subsets of instances and a global 
population is used to account for the global view. This method is scalable to medium/large 
problems but cannot be applied to huge problems.  
There are not many previous works that have dealt with instance selection for huge 
problems. Cano et al. (2005) proposed an evolutionary stratified approach for large 
problems. Although the algorithm shows very good performance, it is still too 
computationally expensive for huge datasets. Kim & Oommen (2004) proposed a method 
based on a recursive application of instance selection to smaller datasets.  
In a recent paper, De Haro-García and García-Pedrajas (2009) showed that the application of 
a recursive divide-and-conquer approach is able to achieve a good performance while 
attaining a dramatic reduction in the execution time of the instance selection process. 

 
3. Scaling up instance selection algorithms using divide-and-conquer 
philosophy 
 

As stated in the previous section, scaling up instance selection algorithms is a very relevant 
issue. In this section we will discuss our proposals based on a divide-and-conquer approach. 
The two methods aim a general objective of scaling up instance selection algorithms. 
However, individually they have two different aims. The first one, based on recursively 
using the principle of divide-and-conquer, has as main goal the reduction of the time 
needed by the instance selection process. In this way, it trades time for performance, 
allowing a small increase on the testing error achieved by the algorithms. The second one, 
based on combining the divide-and-conquer approach with principles from ensembles of 
classifiers, has as special objective reducing the time of the algorithms, but  keeping their 
performance as much as possible. 
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3.1 Recursive divide-and-conquer approach 
As we have said, in the best case, most existing instance selection algorithms are of 

efficiency  2O n . For huge problems, with hundreds of thousands or even millions of 

instances, these methods are not applicable. Trying to develop algorithms with a lower 
efficiency order is likely to be a fruitless search.  
Following the divide-and-conquer philosophy, we can develop a methodology based on 
applying the instance selection algorithm to subsets of the whole training set. A simple 
approach consists of using a stratified random sampling (Liu & Motoda, 2002) (Cano et al., 
2005), where the original dataset is divided into many disjoint subsets, and then apply 
instance selection over each subset independently. However, due to the fact that to select the 
nearest neighbor of an instance we need to know the whole dataset, this method is not likely 
to produce good results. In fact, in practice its performance is poor. However, the divide-
and-conquer principle of this method is an interesting idea for scaling up instance selection 
algorithms. Furthermore, divide-and-conquer methodology has the additional advantage 
that we can adapt the size of the subproblems to the available resources.  
Following this philosophy we start performing a partition of the dataset and then applying 
the instance selection algorithm to every subset independently. This step is able to be 
performed fast and obtains good results in terms of testing error. However, its results in 
terms of storage reduction are poor. To avoid this drawback we apply this method 
recursively. After an instance selection step is performed the remaining instances are 
rejoined to obtain again subsets of approximately the same size and the instance selection 
process is repeated. Fig. 1 shows and outline of the process. 
 

 
Fig. 1. Outline of recursive divide-and-conquer instance selection method 
 
This method is applicable to any instance selection algorithm, as the instance selection 
algorithm is a parameter of the method. More formally, first, our method divides the 

whole training set, T, into disjoint subsets, t i , of size s such as iT = t . s is the only 

parameter of the algorithm. In this study the dataset is randomly partitioned, although 
other methods may be devised. Then, the instance selection algorithm of our choice is 
performed over every subset independently. The selected instances in each subset are 
joined again. With this new training set constructed with the selected instances, the process 
is repeated until a certain stop criterion is fulfilled. The process of combining the instances 
selected by the execution of the instance selection algorithm over each dataset can be 
performed in different ways. We can just repeat the partition process as in the original 
dataset. However, as the first partition is performed we can take advantage of this 
performed task. In this way, instead of repeating the partitioning process, we join together 
the subsets of selected instances until new subsets of approximately size s are obtained. 
The detailed process is shown in Fig. 2. 
 

Data: A training set T={�x1, y1�,� ,�xn ,y n�} , and subset size s. 

Result: The reduced training set S�T .  
 
S=T  

divide instances into disjoint subsets t i :T=�t i of size s 
 
repeat until stop criterion 
 

    for each subset t i do 

        apply instance selection algorithm to t i to obtain si� ti  

         remove from S the instances removed from t i  
    end for 
 

    fusion subsets si to obtain new subsets t j of size s 
 
end repeat 
 

return S  
 
Fig. 2. Recursive divide-and-conquer instance selection algorithm 
 
The stop criterion may be obtained in different ways. We can have a goal in terms of testing 
error or reduction of storage and stop the algorithm when that goal is achieved. However, to 
avoid the necessity of setting any additional parameter, we obtain the stop criterion by 
means of cross-validation. We apply the algorithm using a cross-validation setup and obtain 
the number of steps before the testing error starts to grow. This number of steps gives the 
stopping criterion. 
 
 
 



Scaling up instance selection algorithms by dividing-and-conquering 193

3.1 Recursive divide-and-conquer approach 
As we have said, in the best case, most existing instance selection algorithms are of 

efficiency  2O n . For huge problems, with hundreds of thousands or even millions of 

instances, these methods are not applicable. Trying to develop algorithms with a lower 
efficiency order is likely to be a fruitless search.  
Following the divide-and-conquer philosophy, we can develop a methodology based on 
applying the instance selection algorithm to subsets of the whole training set. A simple 
approach consists of using a stratified random sampling (Liu & Motoda, 2002) (Cano et al., 
2005), where the original dataset is divided into many disjoint subsets, and then apply 
instance selection over each subset independently. However, due to the fact that to select the 
nearest neighbor of an instance we need to know the whole dataset, this method is not likely 
to produce good results. In fact, in practice its performance is poor. However, the divide-
and-conquer principle of this method is an interesting idea for scaling up instance selection 
algorithms. Furthermore, divide-and-conquer methodology has the additional advantage 
that we can adapt the size of the subproblems to the available resources.  
Following this philosophy we start performing a partition of the dataset and then applying 
the instance selection algorithm to every subset independently. This step is able to be 
performed fast and obtains good results in terms of testing error. However, its results in 
terms of storage reduction are poor. To avoid this drawback we apply this method 
recursively. After an instance selection step is performed the remaining instances are 
rejoined to obtain again subsets of approximately the same size and the instance selection 
process is repeated. Fig. 1 shows and outline of the process. 
 

 
Fig. 1. Outline of recursive divide-and-conquer instance selection method 
 
This method is applicable to any instance selection algorithm, as the instance selection 
algorithm is a parameter of the method. More formally, first, our method divides the 

whole training set, T, into disjoint subsets, t i , of size s such as iT = t . s is the only 

parameter of the algorithm. In this study the dataset is randomly partitioned, although 
other methods may be devised. Then, the instance selection algorithm of our choice is 
performed over every subset independently. The selected instances in each subset are 
joined again. With this new training set constructed with the selected instances, the process 
is repeated until a certain stop criterion is fulfilled. The process of combining the instances 
selected by the execution of the instance selection algorithm over each dataset can be 
performed in different ways. We can just repeat the partition process as in the original 
dataset. However, as the first partition is performed we can take advantage of this 
performed task. In this way, instead of repeating the partitioning process, we join together 
the subsets of selected instances until new subsets of approximately size s are obtained. 
The detailed process is shown in Fig. 2. 
 

Data: A training set T={�x1, y1�,� ,�xn ,y n�} , and subset size s. 

Result: The reduced training set S�T .  
 
S=T  

divide instances into disjoint subsets t i :T=�t i of size s 
 
repeat until stop criterion 
 

    for each subset t i do 

        apply instance selection algorithm to t i to obtain si� ti  

         remove from S the instances removed from t i  
    end for 
 

    fusion subsets si to obtain new subsets t j of size s 
 
end repeat 
 

return S  
 
Fig. 2. Recursive divide-and-conquer instance selection algorithm 
 
The stop criterion may be obtained in different ways. We can have a goal in terms of testing 
error or reduction of storage and stop the algorithm when that goal is achieved. However, to 
avoid the necessity of setting any additional parameter, we obtain the stop criterion by 
means of cross-validation. We apply the algorithm using a cross-validation setup and obtain 
the number of steps before the testing error starts to grow. This number of steps gives the 
stopping criterion. 
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3.2 Democratic instance selection 
The above method is very fast as it will be shown in the experimental results. However, it 
has the drawback of worsening the testing error achieved by some algorithms for certain 
problems. To improve the results of our approach in this aspect, we have developed a 
second method we called democratic instance selection. The method is also based on the 
general divide-and-conquer approach but including ideas from ensembles of classifiers. 
Democratic instance selection is based on repeating several rounds of a fast instance 
selection process. Each round on its own would not be able to achieve a good performance. 
However, the combination of several rounds using a voting scheme is able to match the 
performance of an instance selection algorithm applied to the whole dataset with a large 
reduction in the time of the algorithm. Thus, in a different setup from the case of ensembles 
of classifiers, we can consider our method a form of “ensembling” instance selection. 
 

 
Fig. 3. Outline of democratic instance selection method 
 

In classification, several weak learners are combined into an ensemble which is able to 
improve the performance of any of the weak learners isolated (García-Pedrajas et al., 2007). 
In our method, the instance selection algorithm applied to a partition into disjoint subsets of 
the original dataset can be considered a weak instance selector, as it has a partial view of the 
dataset. The combination of these weak selectors using a voting scheme is similar to the 
combination of different learners in an ensemble using a voting scheme. Fig. 3 shows a 
general outline of the method. 
An important issue in our method is determining the number of votes needed to remove an 
instance from the training set. Preliminary experiments showed that this number highly 
depends on the specific dataset. Thus, it is not possible to set a general pre-established value 
usable in any dataset. On the contrary, we need a way of selecting this value directly from 
the dataset in run time.  
A first natural choice would be the use of a cross-validation procedure. However, this 
method is very time consuming. A second choice is estimating the best value for the number 
of votes from the effect on the training set. This latter method is the one we have chosen. The 
election of the number of votes must take into account two different criteria: training error, 
εt , and storage, or memory, requirements m . Both values must be minimized as much as 

possible. Our method of choosing the number of votes needed to remove an instance is 

based on obtaining the threshold number of votes, v , that minimizes a fitness criterion, 
 f v , which is a combination of these two values:  

 
       1tf v = αε v + α m v ,  (1) 

 

where α is a value in the interval [0, 1] which measures the relative relevance of both 
values. In general, the minimization of the error is more important than storage reduction, 
as we prefer a lesser error even if the reduction is smaller. Thus, we have used a value 

of α=0 .75 . Different values can be used if the researcher is more interested in reduction 

than in error. m is measured as the percentage of instances retained, and εt is the training 
error. However, estimating the training error is time consuming if we have large datasets. 
To avoid this problem the training error is estimated using only a small percentage of the 
whole dataset, which is 1% for medium and large datasets, and 0.1% for huge datasets.  
 

Data: A training set     1, 1 n nT = x y , , x ,y , subset size s, and number of rounds r. 

Result: The set of selected instances .S T  
 
for i = 1 to r do  
    divide instances into disjoint subsets :i it t = T of size s 

    for each t i do 

        apply instance selection algorithm to t i  

        store votes of removed instances from t i  
    end for 
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obtain threshold of votes, v , to remove an instance 
S=T  

remove from S all instances with a number of votes above or equal to v  
 

return S  
Fig. 4. Democratic instance selection algorithm 
 
More formally, the process is the following: We perform r rounds of the algorithm and store 
the number of votes received by each instance. Then, we must obtain the threshold number 
of votes, v, to remove an instance. This value must be 1,v r   . We calculate the criterion

 f v  (eq. 1) for all the possible threshold values from 1 to r, and assign v to the value which 
minimizes the criterion. After that, we perform the instance selection removing the instances 
whose number of votes is above or equal to the obtained threshold v. Fig. 4 shows the steps 
of this algorithm. 

 
4. Experimental setup and results 
 

In order to make a comprehensive comparison between the standard algorithms and our 
proposal we have selected a set of 30 problems from the UCI Machine Learning Repository 
(Hettich et al., 1998). A summary of these data sets is shown in Table 1. We have selected 
datasets with, at least, 1000 instances. For estimating the storage reduction and 
generalization error we used a k-fold cross-validation method. In this method the available 
data is divided into k approximately equal subsets. Then, the method is learned k times, 
using, in turn, each one of the k subsets as testing set, and the remaining k-1 subsets as 
training set. The estimated error is the average testing error of the k subsets. A fairly 
standard value for k is k = 10.  

 
4.1 Evaluating instance selection methods 
The evaluation of a certain instance selection algorithm is not a trivial task. We can 
distinguish two basic approaches: direct and indirect evaluation (Liu & Motoda, 2002). 
Direct evaluation evaluates a certain algorithm based exclusively on the data. The objective 
is to measure at which extent the selected instances reflect the information present in the 
original data. Some proposed measures are entropy (Cover & Thomas, 1991), moments 
(Smith, 1998), and histograms (Chaudhuri et al., 1998). 
Indirect methods evaluate the effect of the instance selection algorithm on the task at hand. 
So, if we are interested in classification we evaluate the performance of the used classifier 
when using the reduced set obtained after instance selection as learning set. 

Fe a ture s

Da ta  se t Ins ta nc e s Re a l Bina ry Nomina l Cla s s e s 1-NN e rror

a ba lone 4 17 7 7 - 1 29 0 .8 0 34

a dult 4 8 8 4 2 6 1 7 2 0 .20 0 5
c a r 17 28 - - 6 4 0 .158 1

ge ne 317 5 - - 6 0 3 0 .27 6 7

ge rma n 10 0 0 6 3 11 2 0 .3120
hypothyro id 37 7 2 7 20 2 4 0 .0 6 9 2

is o le t 7 7 9 7 6 17 - - 26 0 .14 4 3

krkopt 28 0 56 6 - - 18 0 .4 356

kr vs . kp 319 6 - 34 2 2 0 .0 8 28
le tte r 20 0 0 0 16 - - 26 0 .0 4 54

ma gic 0 4 19 0 20 10 - - 2 0 .20 8 4

mfe a t-fa c 20 0 0 216 - - 10 0 .0 350
mfe a t-fou 20 0 0 7 6 - - 10 0 .20 8 0

mfe a t-ka r 20 0 0 6 4 - - 10 0 .0 4 35

mfe a t-mor 20 0 0 6 - - 10 0 .29 25

mfe a t-pix 20 0 0 24 0 - - 10 0 .0 27 0
mfe a t-ze r 20 0 0 4 7 - - 10 0 .214 0

nurs e ry 129 6 0 - 1 7 5 0 .250 2

optdigits 56 20 6 4 - - 10 0 .0 256
pa ge -bloc ks 54 7 3 10 - - 5 0 .0 36 9

pe ndigits 10 9 9 2 16 - - 10 0 .0 0 6 6

phone me 54 0 4 5 - - 2 0 .0 9 52
s a tima ge 6 4 35 36 - - 6 0 .0 9 39

s e gme nt 2310 19 - - 7 0 .0 39 8

s huttle 58 0 0 0 9 - - 7 0 .0 0 10

s ic k 37 7 2 7 20 2 2 0 .0 4 30
te xture 550 0 4 0 - - 11 0 .0 10 5

wa ve form 50 0 0 4 0 - - 3 0 .28 6 0

ye a s t 14 8 4 8 - - 10 0 .4 8 7 9
 

Table 1. Summary of datasets used in our experiments 
 
Therefore, when evaluating instance selection algorithms for instance learning, the most 
usual way of evaluation is estimating the performance of the algorithms on a set of 
benchmark problems. In those problems several criteria can be considered, such as (Wilson 
& Martínez, 2000): storage reduction, generalization accuracy, noise tolerance, and learning 
speed. Speed considerations are difficult to measure, as we are evaluating not only an 
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algorithm but also a certain implementation. However, as the main aim of our work is 
scaling up instance selection algorithms, execution time is a basic issue. To allow a fair 
comparison, we have performed all the experiments in the same machine, a bi-processor 
computer with two Intel Xeon QuadCore at 1.60GHz. 
One of the advantages of our approach is that it can be applied to any kind of instance 
selection method. As the instance selection method to apply is just a parameter of the 
algorithm, there is no restriction in the algorithm selected. In the experiments we have used 
several of the most widely used instance selection methods. 
In order to obtain an accurate view of the usefulness of our method, we must select some of 
the most widely used instance selection algorithms. We have chosen to test our model using 
several of the most successful state-of-the-art algorithms. Initially, we used the algorithm 
ICF (Brighton & Mellish, 2002). ICF (Iterative Case Filtering) is based on the concepts of 
coverage and reachability of an instance c, which are defined as follows: 
 

Coverage(c) =  :c' T c LocalSet c'   

Reachable(c) =  :c' T c' LocalSet c   
 

The local-set of a case c is defined as “the set of cases contained in the largest hypersphere 
centered on c such that only cases in the same class as c are contained in the hypersphere” 
(Brighton & Mellish, 2002) so the hypersphere is bounded by the first instance of different 
class. The coverage set of an instance includes the instances that have this as one of their 
neighbors and the reachable set is formed by the instances that are neighbors to this 
instance. The algorithm is based on repeatedly applying a deleting rule to the set of retained 
instances until no more instances fulfill the deleting rule. 
In addition to this method, it is worth mentioning Reduced Nearest Neighbor (RNN) rule 
(Gates, 1972). This method is extremely simple, but it also shows an impressive performance 
in terms of storage reduction. In fact, it is the best of the methods used in these experiments 
in reducing storage requirements, as will be shown in the next section. However, it has a 
serious drawback, its computational complexity. Among the standard methods used this is 
the one that shows a worst scalability, taking several hundreds hours in the worst case. 
Therefore, RNN is the perfect target for our methodology, an instance selection method 
highly efficient but with a serious scalability problem. So we have also tested our approach 
using RNN, as base instance selection method.  
The same parameters were used for the standard version of every algorithm and its 
application within our methodology. All the standard methods have no relevant 
parameters, the only value we must set is k, the number of nearest neighbors. Both, for ICF 
and RNN, we used k = 3 neighbors. This is a fairly standard value (Cano et al., 2003). Our 
method has two parameters: subset size, s, for both methods, and number of rounds, r, for 
the democratic approach. Regarding subset size we must use a value large enough to allow 
for a meaningful application of the instance selection algorithm on the subset, and small 
enough to allow a fast execution, as the time used by our method grows with s. As a 
compromise value we have chosen s = 100. For the number of rounds we have chosen a 
small value to allow for a fast execution, r = 10. The application of our recursive divide-and-
conquer method with a certain instance selection algorithm X will be named RECURIS.X and 
the democratic approach named DEMOIS.X.  
 

4.2 Recursive divide-and-conquer approach 
In this section we show the results using the recursive approach. First, we compare the 
proposed approach against standard instance selection methods in terms of testing error 
and storage requirements. In the next section we will show execution time results. 
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Fig. 5. Results of standard ICF method and its recursive counterpart for testing error and 
storage requirements 
 
Fig. 5 shows the results comparing standard ICF and its recursive counterpart. The figure 
(as well as the following ones) shows for each dataset the difference between the standard 
method and our approach, a negative value meaning a better results of our proposal. The 
figure shows that in terms of storage reduction our method is better in general, achieving for 
some datasets, namely car, gene, german, krkopt, krvskp and nursery, significant 
improvements over the standard method. In terms of testing error RECURIS.ICF is slightly 
worse than standard ICF. 
Fig. 6 shows the results for RNN as base instance selection method. This a very good test of 
our approach, as RNN is able to achieve very good results in terms of storage reduction 
while keeping testing error in moderate bounds. However, RNN has a big problem of 
scalability. The results show that our method is able to mostly keep the good performance 
of RNN in terms of storage requirements, although with a general worst behavior. 
However, this is compensated by a better testing error for most datasets. 
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algorithm but also a certain implementation. However, as the main aim of our work is 
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in reducing storage requirements, as will be shown in the next section. However, it has a 
serious drawback, its computational complexity. Among the standard methods used this is 
the one that shows a worst scalability, taking several hundreds hours in the worst case. 
Therefore, RNN is the perfect target for our methodology, an instance selection method 
highly efficient but with a serious scalability problem. So we have also tested our approach 
using RNN, as base instance selection method.  
The same parameters were used for the standard version of every algorithm and its 
application within our methodology. All the standard methods have no relevant 
parameters, the only value we must set is k, the number of nearest neighbors. Both, for ICF 
and RNN, we used k = 3 neighbors. This is a fairly standard value (Cano et al., 2003). Our 
method has two parameters: subset size, s, for both methods, and number of rounds, r, for 
the democratic approach. Regarding subset size we must use a value large enough to allow 
for a meaningful application of the instance selection algorithm on the subset, and small 
enough to allow a fast execution, as the time used by our method grows with s. As a 
compromise value we have chosen s = 100. For the number of rounds we have chosen a 
small value to allow for a fast execution, r = 10. The application of our recursive divide-and-
conquer method with a certain instance selection algorithm X will be named RECURIS.X and 
the democratic approach named DEMOIS.X.  
 

4.2 Recursive divide-and-conquer approach 
In this section we show the results using the recursive approach. First, we compare the 
proposed approach against standard instance selection methods in terms of testing error 
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Fig. 5. Results of standard ICF method and its recursive counterpart for testing error and 
storage requirements 
 
Fig. 5 shows the results comparing standard ICF and its recursive counterpart. The figure 
(as well as the following ones) shows for each dataset the difference between the standard 
method and our approach, a negative value meaning a better results of our proposal. The 
figure shows that in terms of storage reduction our method is better in general, achieving for 
some datasets, namely car, gene, german, krkopt, krvskp and nursery, significant 
improvements over the standard method. In terms of testing error RECURIS.ICF is slightly 
worse than standard ICF. 
Fig. 6 shows the results for RNN as base instance selection method. This a very good test of 
our approach, as RNN is able to achieve very good results in terms of storage reduction 
while keeping testing error in moderate bounds. However, RNN has a big problem of 
scalability. The results show that our method is able to mostly keep the good performance 
of RNN in terms of storage requirements, although with a general worst behavior. 
However, this is compensated by a better testing error for most datasets. 
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Fig. 6. Results of standard RNN and its recursive counterpart in terms of testing error and 
storage requirements 
 
As an alternative to these standard methods, genetic algorithms have been applied to 
instance selection, considering this task to be a search problem. The application is easy and 
straightforward. Each individual is a binary vector that codes a certain sample of the 
training set. The evaluation is usually made considering both data reduction and 
classification accuracy. Examples of applications of genetic algorithms to instance selection 
can be found in (Kuncheva, 1995), (Ishibuchi & Nakashima, 2000) and (Reeves & Bush, 
2001). Cano et al. (2003) performed a comprehensive comparison of the performance of 
different evolutionary algorithms for instance selection. They compared a generational 
genetic algorithm (Goldberg, 1989), a steady-state genetic algorithm (Whitley, 1989), a CHC 
genetic algorithm (Eshelman, 1990), and a population based incremental learning algorithm 
(Baluja, 1994). They found that evolutionary based methods were able to outperform 
classical algorithms in both classification accuracy and data reduction. Among the 
evolutionary algorithms, CHC was able to achieve the best overall performance. 
In evolutionary computation, a population (set) of individuals (solutions to the problem 
faced) are codified following a code similar to the genetic code of plants and animals. This 
population of solutions is evolved (modified) over a certain number of generations 
(iterations) until the defined stop criterion is fulfilled. Each individual is assigned a real 
value that measures its ability to solve the problem, which is called its fitness. 
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Fig. 7. Results of standard CHC and its recursive counterpart in terms of testing error and 
storage requirements 
 
In each iteration new solutions are obtained combining two or more individuals (crossover 
operator) or randomly modifying one individual (mutation operator). After applying these 
two operators a subset of individuals is selected to survive to the next generation, either by 
sampling the current individuals with a probability proportional to their fitness, or by 
selecting the best ones (elitism). The repeated processes of crossover, mutation and selection 
are able to obtain increasingly better solutions for many problems of Artificial Intelligence. 
Nevertheless, the major problem addressed when applying genetic algorithms to instance 
selection is the scaling of the algorithm. As the number of instances grows, the time needed 
for the genetic algorithm to reach a good solution increases exponentially, making it totally 
useless for large problems. As we are concerned with this problem, we have used as fifth 
instance selection method a genetic algorithm using CHC methodology. The execution time 
of CHC is clearly longer than the time spent by ICF, so it gives us a good benchmark to test 
our methodology on an algorithm that, as RNN, has a big scalability problem. 
For CHC, see Fig. 7, the results show that the recursive approach is able to improve the 
results of the standard algorithm in terms of storage requirements but the error is worse 
than when using the whole dataset. However, the achieved storage reduction is relevant, 
and our method is clearly worse than standard CHC only in magic04 problem.  
An interesting side result is the problem of scalability of CHC algorithm, which is more 
marked for this algorithm than for the previous ones. In other works, (Cano et al., 2003) 
(García-Pedrajas et al., 2009), CHC algorithm was compared with standard methods in small 
to medium problems. For those problems, the performance of CHC was better than the 
performance of other methods. However, as the datasets are larger, the scalability problem 
of CHC manifests itself. In our set of problems, CHC clearly performs worse than ICF and 
RNN in terms of storage reduction. We must take into account that for CHC we need a bit in 
the chromosome for each instance in the dataset. This means that for large problems, such as 
adult, krkopt, letter, magic or shuttle, the chromosome has more than 10000 bits, making the 
convergence of the algorithm problematic. Thus, CHC is, together with RNN, an excellent 
example of the applicability of our approach.  
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Fig. 6. Results of standard RNN and its recursive counterpart in terms of testing error and 
storage requirements 
 
As an alternative to these standard methods, genetic algorithms have been applied to 
instance selection, considering this task to be a search problem. The application is easy and 
straightforward. Each individual is a binary vector that codes a certain sample of the 
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genetic algorithm (Eshelman, 1990), and a population based incremental learning algorithm 
(Baluja, 1994). They found that evolutionary based methods were able to outperform 
classical algorithms in both classification accuracy and data reduction. Among the 
evolutionary algorithms, CHC was able to achieve the best overall performance. 
In evolutionary computation, a population (set) of individuals (solutions to the problem 
faced) are codified following a code similar to the genetic code of plants and animals. This 
population of solutions is evolved (modified) over a certain number of generations 
(iterations) until the defined stop criterion is fulfilled. Each individual is assigned a real 
value that measures its ability to solve the problem, which is called its fitness. 
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Fig. 7. Results of standard CHC and its recursive counterpart in terms of testing error and 
storage requirements 
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selecting the best ones (elitism). The repeated processes of crossover, mutation and selection 
are able to obtain increasingly better solutions for many problems of Artificial Intelligence. 
Nevertheless, the major problem addressed when applying genetic algorithms to instance 
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for the genetic algorithm to reach a good solution increases exponentially, making it totally 
useless for large problems. As we are concerned with this problem, we have used as fifth 
instance selection method a genetic algorithm using CHC methodology. The execution time 
of CHC is clearly longer than the time spent by ICF, so it gives us a good benchmark to test 
our methodology on an algorithm that, as RNN, has a big scalability problem. 
For CHC, see Fig. 7, the results show that the recursive approach is able to improve the 
results of the standard algorithm in terms of storage requirements but the error is worse 
than when using the whole dataset. However, the achieved storage reduction is relevant, 
and our method is clearly worse than standard CHC only in magic04 problem.  
An interesting side result is the problem of scalability of CHC algorithm, which is more 
marked for this algorithm than for the previous ones. In other works, (Cano et al., 2003) 
(García-Pedrajas et al., 2009), CHC algorithm was compared with standard methods in small 
to medium problems. For those problems, the performance of CHC was better than the 
performance of other methods. However, as the datasets are larger, the scalability problem 
of CHC manifests itself. In our set of problems, CHC clearly performs worse than ICF and 
RNN in terms of storage reduction. We must take into account that for CHC we need a bit in 
the chromosome for each instance in the dataset. This means that for large problems, such as 
adult, krkopt, letter, magic or shuttle, the chromosome has more than 10000 bits, making the 
convergence of the algorithm problematic. Thus, CHC is, together with RNN, an excellent 
example of the applicability of our approach.  
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4.3 Democratic approach 
In this section we show the results using the democratic approach. Results for ICF and 
DEMOIS.ICF are plotted in Fig. 8.  
In terms of testing error, DEMOIS.ICF is able to match the results of ICF for most of the 
datasets. In terms of storage reduction the average performance of both algorithms is 
similar, with a remarkably good performance of DEMOIS.ICF for nursery and car datasets. 
The next experiment is conducted using as base instance selection algorithm RNN. The 
results are plotted in Fig. 9. As we stated in the previous section, this is a perfect example of 
the potentialities of our approach. In our experiments RNN showed the best performance in 
terms of storage reduction. However, the algorithm has a very serious problem of 
scalability. As an extreme example, for adult problem it took more than 500 hours per 
experiment. This scalability problem prevents is application in those problems where it 
would be most useful. 
Fig. 8. Results of standard ICF method and its democratic counterpart for testing error and 
storage requirements 
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Fig. 9. Results of standard RNN method and its democratic counterpart for testing error 
and storage requirements 

The figure shows how DEMOIS.RNN is able to solve the scalability problem of RNN. In terms 
of testing error, it is able to achieve a similar performance as standard RNN. In terms of 
storage reduction our algorithm performs worse than RNN. However, the performance of 
DEMOIS.RNN is still very good, in fact, better than any other of the previous algorithms. So, 
our approach is able to scale RNN to complex problems, improving its results in terms of 
testing error, but with a small worsening of the storage reduction. In terms of execution time 
the results are remarkable, the reduction of the time consumed by the selection process is 
large, with the extreme example of the two most time consuming datasets, adult and krkopt, 
where the speed-up is more than a hundred times (see next section). 
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Fig. 10. Results of standard CHC method and its democratic counterpart for testing error 
and storage requirements 
 
Fig. 10 plots the results of CHC algorithm. For this method, the scaling up of CHC provided 
by DEMOIS.CHC is evident not only in terms of running time, with a large reduction in all 30 
datasets, but also in terms of storage reduction. DEMOIS.CHC is able to improve the 
reduction of CHC in all 30 datasets, with an average improvement of more than 20%, from 
an average storage of CHC of 31.83% to an average storage of 11.58%. The bad side effect is 
a worse testing error, which is however not very marked and compensated by the 
improvement in running time and storage reduction. As a summary, for CHC the results 
show that the democratic approach is able to improve the results of the standard algorithm 
in terms of storage requirements but the error is worse than when using the whole dataset. 
However, as it was the case for the recursive approach, there is a clear gaining in storage 
reduction with a moderately worse testing error. 

 
4.4 Time 
As we have estated our main aim is the scaling up of instance selection algorithms. In the 
previous sections we have shown that our methodology is able to match the performance of 
standard instance selection algorithms. In this section we show the results of execution time 
spent by each algorithm, showing a dramatic advantage of our approach. Fig. 11, 12 and 13 
show the execution time of ICF, RNN and CHC methods respectively. The figures show 
execution time, in seconds, plotted against problem size. 
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4.3 Democratic approach 
In this section we show the results using the democratic approach. Results for ICF and 
DEMOIS.ICF are plotted in Fig. 8.  
In terms of testing error, DEMOIS.ICF is able to match the results of ICF for most of the 
datasets. In terms of storage reduction the average performance of both algorithms is 
similar, with a remarkably good performance of DEMOIS.ICF for nursery and car datasets. 
The next experiment is conducted using as base instance selection algorithm RNN. The 
results are plotted in Fig. 9. As we stated in the previous section, this is a perfect example of 
the potentialities of our approach. In our experiments RNN showed the best performance in 
terms of storage reduction. However, the algorithm has a very serious problem of 
scalability. As an extreme example, for adult problem it took more than 500 hours per 
experiment. This scalability problem prevents is application in those problems where it 
would be most useful. 
Fig. 8. Results of standard ICF method and its democratic counterpart for testing error and 
storage requirements 
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Fig. 9. Results of standard RNN method and its democratic counterpart for testing error 
and storage requirements 

The figure shows how DEMOIS.RNN is able to solve the scalability problem of RNN. In terms 
of testing error, it is able to achieve a similar performance as standard RNN. In terms of 
storage reduction our algorithm performs worse than RNN. However, the performance of 
DEMOIS.RNN is still very good, in fact, better than any other of the previous algorithms. So, 
our approach is able to scale RNN to complex problems, improving its results in terms of 
testing error, but with a small worsening of the storage reduction. In terms of execution time 
the results are remarkable, the reduction of the time consumed by the selection process is 
large, with the extreme example of the two most time consuming datasets, adult and krkopt, 
where the speed-up is more than a hundred times (see next section). 
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Fig. 10. Results of standard CHC method and its democratic counterpart for testing error 
and storage requirements 
 
Fig. 10 plots the results of CHC algorithm. For this method, the scaling up of CHC provided 
by DEMOIS.CHC is evident not only in terms of running time, with a large reduction in all 30 
datasets, but also in terms of storage reduction. DEMOIS.CHC is able to improve the 
reduction of CHC in all 30 datasets, with an average improvement of more than 20%, from 
an average storage of CHC of 31.83% to an average storage of 11.58%. The bad side effect is 
a worse testing error, which is however not very marked and compensated by the 
improvement in running time and storage reduction. As a summary, for CHC the results 
show that the democratic approach is able to improve the results of the standard algorithm 
in terms of storage requirements but the error is worse than when using the whole dataset. 
However, as it was the case for the recursive approach, there is a clear gaining in storage 
reduction with a moderately worse testing error. 

 
4.4 Time 
As we have estated our main aim is the scaling up of instance selection algorithms. In the 
previous sections we have shown that our methodology is able to match the performance of 
standard instance selection algorithms. In this section we show the results of execution time 
spent by each algorithm, showing a dramatic advantage of our approach. Fig. 11, 12 and 13 
show the execution time of ICF, RNN and CHC methods respectively. The figures show 
execution time, in seconds, plotted against problem size. 
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Fig. 11. Execution time using ICF as base instance selection algorithm 
 
All the three figures show the excellent behavior of the two described methods. Both behave 
almost linearly as the problem size grows. On the other hand, ICF shows it is a quadratic 
complexity method and RNN and CHC behave far worse. 
From a theoretical point of view the two algorithms presented in this chapter are of linear 

complexity. For the recursive approach we divide the dataset into ns subsets of size s. Then, 
we apply the instance selection algorithm to each subset. The time needed for performing 
the selection in each subset will be fixed as the size of each subset is always s, regardless the 

number of instances of the datasets. More instances means a larger ns . Thus, the 

complexity of each step of the recursive algorithm will be linear as ns depends linearly on 
n, the size of the dataset. The algorithm performs a few of these steps before reaching the 
stopping criterion, and thus the whole method is of linear complexity. 
The democratic approach also divides the dataset into partitions of disjoint subsets of size s. 
Thus, the chosen instance selection algorithm is always applied to a subset of fixed size, s, 
which is independent from the actual size of the dataset. The complexity of this application 
of the algorithm depends on the base instance selection algorithm we are using, but will 
always be small, as the size sis always small. Let K be the number of operations needed by 
the instance selection algorithm to perform its task in a dataset of size s. For a dataset of n 
instances we must perform this instance selection process once for each subset, that is n/s 
times, spending a time proportional to (n/s)K. The total time needed by the algorithm to 
perform r rounds will be proportional to r(n/s)K, which is linear in the number of instances, 
as K is a constant value.  
 

 
Fig. 12. Execution time using RNN as base instance selection algorithm. 
 
Thus, the gaining in execution time would be greater as the size of the datasets is larger. If 
the complexity of the instance selection algorithm is greater, the reduction of the execution 
will be even better. The method has the additional advantage of allowing an easy parallel 
implementation. As the application of the instance selection algorithm to each subset is 
independent from all the remaining subsets, all the subsets can be processed at the same 
time, even for different rounds of votes. Also, the communication between the nodes of the 
parallel execution is small. 
 

 
Fig. 13. Execution time using CHC as base instance selection algorithm 
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An additional process completes the method, the determination of the number of votes. 
Regarding the determination of the number of votes, the process can be made in different 

ways. If we consider all the training instances, the cost of this step would be  2O n .  

However, to keep the complexity linear we use a random subset of the training set for 
determining the number of votes, with a limit on the maximum size of this subset that is 
fixed for any dataset. In this way, from medium to large datasets we use the 10% of the 
training set, for huge problems the 1%, and the percentage is further reduced as the size of 
the dataset grows. In fact, we have experimentally verified that we can consider any 
reasonable bound1 in the number of instances without damaging the performance of the 
algorithm. Using a small percentage does not harm the estimation of the threshold of votes. 
With this method the complexity of this step is  1O as the number of instances used is 
bounded regardless the size of the dataset. 
Finally, we consider the partition of the dataset apart from the algorithm as many different 
partition methods can be devised. The performed random partition is of complexity  O n .  

 
7. Conclusions 
 

In this chapter we have shown two new methods for scaling up instance selection 
algorithms. These methods are applicable to any instance selection method without any 
modification. The methods consist of a recursive procedure, where the dataset is partitioned 
into disjoint subsets, an instance selection algorithm is applied to each subset, and then the 
selected instances are rejoined to repeat the process, and a democratic approach where 
several rounds of approximate instance selection are performed and the result is obtained by 
a voting scheme. 
Using three well-known instance selection algorithms, ICF, RNN and a CHC genetic 
algorithm, we have shown that our method is able to match the performance of the original 
algorithms with a considerable reduction in execution time. In terms of reduction of storage 
requirements, our approach is even better than the use of the original instance selection 
algorithm over the whole dataset. Additionally, our method is straightforwardly 
parallelizable without modifications. 
The proposed methods allow the application of instance selection algorithms to almost any 
problem size. The behavior is linear in the number of instances as it has been shown both 
theoretically and experimentally.  
Furthermore, this philosophy can be extended to other learning algorithms such as feature 
selection or clustering, which means it is a powerful tool for scaling up machine learning 
algorithms. 
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ways. If we consider all the training instances, the cost of this step would be  2O n .  
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training set, for huge problems the 1%, and the percentage is further reduced as the size of 
the dataset grows. In fact, we have experimentally verified that we can consider any 
reasonable bound1 in the number of instances without damaging the performance of the 
algorithm. Using a small percentage does not harm the estimation of the threshold of votes. 
With this method the complexity of this step is  1O as the number of instances used is 
bounded regardless the size of the dataset. 
Finally, we consider the partition of the dataset apart from the algorithm as many different 
partition methods can be devised. The performed random partition is of complexity  O n .  

 
7. Conclusions 
 

In this chapter we have shown two new methods for scaling up instance selection 
algorithms. These methods are applicable to any instance selection method without any 
modification. The methods consist of a recursive procedure, where the dataset is partitioned 
into disjoint subsets, an instance selection algorithm is applied to each subset, and then the 
selected instances are rejoined to repeat the process, and a democratic approach where 
several rounds of approximate instance selection are performed and the result is obtained by 
a voting scheme. 
Using three well-known instance selection algorithms, ICF, RNN and a CHC genetic 
algorithm, we have shown that our method is able to match the performance of the original 
algorithms with a considerable reduction in execution time. In terms of reduction of storage 
requirements, our approach is even better than the use of the original instance selection 
algorithm over the whole dataset. Additionally, our method is straightforwardly 
parallelizable without modifications. 
The proposed methods allow the application of instance selection algorithms to almost any 
problem size. The behavior is linear in the number of instances as it has been shown both 
theoretically and experimentally.  
Furthermore, this philosophy can be extended to other learning algorithms such as feature 
selection or clustering, which means it is a powerful tool for scaling up machine learning 
algorithms. 
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1. Introduction    
 

Swarm intelligence is a relatively novel approach to problem solving that takes inspiration 
from the social behaviors of insects and of other animals. In particular, ants have inspired a 
number of methods and techniques among which the most studied and the most successful 
one is the ant colony optimization. 
Ant colony optimization (ACO) algorithm, a novel population-based and meta-heuristic 
approach, was recently proposed by Dorigo et al. to solve several discrete optimization 
problems (Dorigo, 1996, 1997). The general ACO algorithm mimics the way real ants find 
the shortest route between a food source and their nest. The ants communicate with one 
another by means of pheromone trails and exchange information indirectly about which 
path should be followed. Paths with higher pheromone levels will more likely be chosen 
and thus reinforced later, while the pheromone intensity of paths that are not chosen is 
decreased by evaporation. This form of indirect communication is known as stigmergy, and 
provides the ant colony shortest-path finding capabilities. The first algorithm following the 
principles of the ACO meta-heuristic is the Ant System (AS) (Dorigo,1996), where ants 
iteratively construct solutions and add pheromone to the paths corresponding to these 
solutions. Path selection is a stochastic procedure based on two parameters, the pheromone 
and heuristic values, which will be detailed in the following section in this chapter. The 
pheromone value gives an indication of the number of ants that chose the trail recently, 
while the heuristic value is problem-dependent and it has different forms for different cases. 
Due to the fact that the general ACO can be easily extended to deal with other optimization 
problems, its several variants has been proposed as well, such as Ant Colony System 
(Dorigo,1997), rank-based Ant System (Bullnheimer,1999), and Elitist Ant System 
(Dorigo,1996) . And the above variants of ACO have been applied to a variety of different 
problems, such as vehicle routing (Montemanni,2005), scheduling (Blum,2005), and 
travelling salesman problem (Stützle,2000). Recently, ants have also entered the data mining 
domain, addressing both the clustering (Kanade,2007), and classification task (Martens et 
al.,2007). 
This chapter will focus on another application of ACO to track initiation in the target 
tracking field. To the best of our knowledge, there are few reports on the track initiation 
using the ACO. But in the real world, it is observed that there is a case in which almost all 
ants are inclined to gather around the food sources in the form of line or curve. Fig. 1 shows 
the evolution process of ants searching for foods. Initially, all ants are distributed randomly 
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in the plane as in Fig.1 (a), and a few hours later we find that most of ants gather together 
around the food sources as shown in Fig.1 (b). Taking inspiration from such phenomenon, 
we may regard these linear or curvy food sources as tentative tracks to be initialized, and 
the corresponding ant model is established from the optimal aspect to solve the problem of 
multiple track initiation. 

food source 1

food source 2

          

food source 1

food source 2

 
               (a) Initial distribution of ants                  (b) The distribution of ants a few hours later 
Fig. 1. The evolution process of ant search for foods 
 
The remainder of this chapter is structured as follows. First, in section 2, the widely used ant 
system and its successors are introduced. Section 3 gives the new application of ACO to the 
track initiation problem, and the system of ants of different tasks is modeled to coincide 
with the problem. The performance comparison of ACO-based techniques for track 
initiation is carried out and analysized in Section 4. Finally, some conclusions are drawn. 

 
2. Ant System and Its Direct Successors 
 

2.1 Ant System 
Initially, three different versions of AS were developed (Dorigo et al., 1991), namely ant-
density, ant-quantity, and ant-cycle. In the ant-density and ant-quantity versions the ants 
updated the pheromone directly after a move from one city to an adjacent city, while in the 
ant-cycle version the pheromone update was only done after all the ants had constructed the 
tours and the amount of pheromone deposited by each ant was set to be a function of the 
tour quality.  
The two main phases of the AS algorithm constitute the ants’ solution construction and the 
pheromone update. In AS, a good way to initialize the pheromone trails is to set them to a 
value slightly higher than the expected amount of pheromone deposited by the ants in one 
iteration. The reason for this choice is that if the initial pheromone values are too low, then 
the search is quickly biased by the first tours generated by the ants, which in general leads 
toward the exploration of inferior zones of the search space. On the other side, if the initial 
pheromone values are too high, then many iterations are lost waiting until pheromone 
evaporation reduces enough pheromone values, so that pheromone added by ants can start 
to bias the search. 
Tour Construction 
In AS, m  (artificial) ants incrementally build a tour of the TSP. Initially, ants are put on 
randomly chosen cities. At each construction step, ant k  applies a probabilistic action choice 

 

rule, called random proportional rule, to decide which city to visit next. In particular, the 
probability with which ant k , located at city i , chooses to go to city j  is 
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where 1/ij ijd   is a heuristic value that is computed in advance,  and  are two 
parameters which determine the relative importance of the pheromone trail and the 
heuristic information, and k

iN  is the set of cities that ant k  has not visited so far. By this 
probabilistic rule, the probability of choosing the arc ( , )i j  may increase with the bigger 

value of the associated pheromone trail ij and of the heuristic information value ij . The 
role of the parameters  and  is described as below. If 0  , the closest cities are more 
likely to be selected: this corresponds to a classic stochastic greedy algorithm. If 0  , it 
means that the pheromone is used alone, without any heuristic bias. This generally leads to 
rather poor results and, in particular, for values of 1   it leads to earlier stagnation 
situation, that is, a situation in which all the ants follow the same path and construct the 
same tour, which, in general, is strongly suboptimal. 
Each ant maintains a memory which records the cities already visited. And moreover, this 
memory is used to define the feasible neighbourhood k

iN  in the construction rule given by 
equation (1). In addition, such a memory allows ant k  both to compute the length of the 
tour  kT  it generated and to retrace the path to deposit pheromone for upcoming global 
pheromone update. 
Concerning solution construction, there are two different ways of implementing it: parallel 
and sequential solution construction. In the parallel implementation, at each construction 
step all ants move from their current city to the next one, while in the sequential 
implementation an ant builds a complete tour before the next one starts to build another one. 
In the AS case, both choices for the implementation of the tour construction are equivalent 
in the sense that they do not significantly influence the algorithm’s behaviour. 
Update of Pheromone Trails 
After all the ants have constructed their tours, the pheromone trails are updated. This is 
done by first lowering the pheromone value on all arcs by a factor, and then adding an 
amount of pheromone on the arcs the ants have crossed in their tours. Pheromone 
evaporation is implemented by the following law 
 

(1 ) , ( , )ij ij i j L                                                              (2)  
where 0 1   is the pheromone evaporation rate. The parameter   is used to avoid 
unlimited accumulation of the pheromone trails and it enables the algorithm to “forget’’ bad 
decisions previously taken. In fact, if an arc is not chosen by the ants, its associated 
pheromone value decreases exponentially with the number of iterations. After evaporation, 
all ants deposit pheromone on the arcs they have crossed in their tour: 
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in the plane as in Fig.1 (a), and a few hours later we find that most of ants gather together 
around the food sources as shown in Fig.1 (b). Taking inspiration from such phenomenon, 
we may regard these linear or curvy food sources as tentative tracks to be initialized, and 
the corresponding ant model is established from the optimal aspect to solve the problem of 
multiple track initiation. 
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system and its successors are introduced. Section 3 gives the new application of ACO to the 
track initiation problem, and the system of ants of different tasks is modeled to coincide 
with the problem. The performance comparison of ACO-based techniques for track 
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pheromone values are too high, then many iterations are lost waiting until pheromone 
evaporation reduces enough pheromone values, so that pheromone added by ants can start 
to bias the search. 
Tour Construction 
In AS, m  (artificial) ants incrementally build a tour of the TSP. Initially, ants are put on 
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where 1/ij ijd   is a heuristic value that is computed in advance,  and  are two 
parameters which determine the relative importance of the pheromone trail and the 
heuristic information, and k

iN  is the set of cities that ant k  has not visited so far. By this 
probabilistic rule, the probability of choosing the arc ( , )i j  may increase with the bigger 

value of the associated pheromone trail ij and of the heuristic information value ij . The 
role of the parameters  and  is described as below. If 0  , the closest cities are more 
likely to be selected: this corresponds to a classic stochastic greedy algorithm. If 0  , it 
means that the pheromone is used alone, without any heuristic bias. This generally leads to 
rather poor results and, in particular, for values of 1   it leads to earlier stagnation 
situation, that is, a situation in which all the ants follow the same path and construct the 
same tour, which, in general, is strongly suboptimal. 
Each ant maintains a memory which records the cities already visited. And moreover, this 
memory is used to define the feasible neighbourhood k

iN  in the construction rule given by 
equation (1). In addition, such a memory allows ant k  both to compute the length of the 
tour  kT  it generated and to retrace the path to deposit pheromone for upcoming global 
pheromone update. 
Concerning solution construction, there are two different ways of implementing it: parallel 
and sequential solution construction. In the parallel implementation, at each construction 
step all ants move from their current city to the next one, while in the sequential 
implementation an ant builds a complete tour before the next one starts to build another one. 
In the AS case, both choices for the implementation of the tour construction are equivalent 
in the sense that they do not significantly influence the algorithm’s behaviour. 
Update of Pheromone Trails 
After all the ants have constructed their tours, the pheromone trails are updated. This is 
done by first lowering the pheromone value on all arcs by a factor, and then adding an 
amount of pheromone on the arcs the ants have crossed in their tours. Pheromone 
evaporation is implemented by the following law 
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where 0 1   is the pheromone evaporation rate. The parameter   is used to avoid 
unlimited accumulation of the pheromone trails and it enables the algorithm to “forget’’ bad 
decisions previously taken. In fact, if an arc is not chosen by the ants, its associated 
pheromone value decreases exponentially with the number of iterations. After evaporation, 
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where k
ij  is the amount of pheromone ant k  deposits on the arcs it has visited. It is 

defined as follows: 
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where kC , the length of the tour kT  travelled by ant k , is computed as the sum of the 
lengths of the arcs belonging to kT . By means of equation (4), the shorter an ant’s tour is, 
the more pheromone the arcs belonging to this tour receive. In general, arcs that are used by 
many ants and which are part of short tours, receive more pheromone and are, therefore, 
more likely to be chosen by ants in the following iterations of the algorithm. 

 
2.2. Elitist Ant System 
The elitist strategy for Ant System (EAS) (Dorigo,1996)  is, in principle, to provide a strong 
additional reinforcement to the arcs belonging to the best tour found since the start of the 
algorithm. Note that this additional feedback to the best-so-far tour is another example of a 
daemon action of the ACO meta-heuristics. 
Update of Pheromone Trails 
The additional reinforcement of tour  bsT  is achieved by adding a quantity / bse C  to its arcs, 
where e  is a parameter that defines the weight given to the best-so-far tour  bsT , and bsC  is 
its length. Thus, equation (3) for the pheromone deposit becomes 
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where k
ij  is defined as in equation (4) and bs

ij is defined as follows: 
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Note that in EAS the pheromone evaporation is implemented as in AS. 

 
2.3. Rank-Based Ant System 
Another improvement over AS (Bullnheimer,1999) is the rank-based version of AS ( rankAS ). 
In rankAS  each ant deposits an amount of pheromone that decreases with its rank. 
Additionally, as in EAS, the best-so-far ant always receives the largest amount of 
pheromone in each iteration. 
Update of Pheromone Trails 
Before updating the pheromone trails, the ants are sorted by increasing tour length and the 
quantity of pheromone an ant deposits is weighted according to the rank of the ant. In each 

 

iteration, assume that total W  best-ranked ants are considered, and only the ( 1)W   best-
ranked ants and the ant that produced the best-so-far tour are allowed to deposit 
pheromone. The best-so-far tour gives the strongest feedback with weight w ; the r th best 
ant of the current iteration contributes to pheromone updating with the value 1/ rC  
multiplied by a weight given by max  0,W r . Thus, the rankAS  pheromone update rule is 
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where 1/r r
ij C   and 1/bs bs

ij C  .  

 
2.4 Max- Min  Ant System 
Max-Min Ant System (MMAS) (St ü tzle & Hoos, 2000) introduces some main 
modifications with respect to AS. First, it strongly exploits the best tours found: only either 
the iteration-best ant, that is, the ant that produced the best tour in the current iteration, or 
the best-so-far ant is allowed to deposit pheromone. Unfortunately, such a strategy may lead 
to a stagnation situation in which all ants follow the same tour, because of the excessive 
growth of pheromone trails on arcs of a good, although suboptimal, tour. To counteract this 
effect, a second modification introduced by MMAS is that it limits the possible range of 
pheromone trail values to the interval min max[ , ]  . Second, the pheromone trails are 
initialized to the upper pheromone trail limit, which, together with a small pheromone 
evaporation rate, increases the exploration of tours at the start of the search. Finally, in 
MMAS, pheromone trails are reinitialized each time the system approaches stagnation or 
when no improved tour has been generated for a certain number of consecutive iterations. 
Update of Pheromone Trails 
After all ants have constructed a tour, pheromones are updated by applying evaporation as 
in AS, followed by the deposit of new pheromone as follows: 
 

,best
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where 1/best best
ij C  . The ant which is allowed to add pheromone may be either the best-

so-far, in which case 1/best bs
ij C  , or the iteration-best, in which case 1/best ib

ij C  , 

where ibC  is the length of the iteration-best tour. In general, in MMAS implementations 
both the iteration-best and the best-so-far update rules are used in an alternate way. 
Obviously, the choice of the relative frequency with which the two pheromone update rules 
are applied has an influence on how greedy the search is: When pheromone updates are 
always performed by the best-so-far ant, the search focuses very quickly around bsT , 
whereas when it is the iteration-best ant that updates pheromones, then the number of arcs 
that receive pheromone is larger and the search is less directed. 
Pheromone Trail Limits 
In MMAS, lower and upper limits min  and max  on the possible pheromone values on any 
arc are imposed in order to avoid earlier searching stagnation. In particular, the imposed 



Ant Colony Optimization 213

 

1
(1 ) , ( , )

m
k

ij ij ij
k

i j L   


                                                        (3) 

where k
ij  is the amount of pheromone ant k  deposits on the arcs it has visited. It is 

defined as follows: 
 

1/ ( , )
0

k k
k
ij

C if arc i j belongs to T
otherw




  


                                         (4) 

where kC , the length of the tour kT  travelled by ant k , is computed as the sum of the 
lengths of the arcs belonging to kT . By means of equation (4), the shorter an ant’s tour is, 
the more pheromone the arcs belonging to this tour receive. In general, arcs that are used by 
many ants and which are part of short tours, receive more pheromone and are, therefore, 
more likely to be chosen by ants in the following iterations of the algorithm. 

 
2.2. Elitist Ant System 
The elitist strategy for Ant System (EAS) (Dorigo,1996)  is, in principle, to provide a strong 
additional reinforcement to the arcs belonging to the best tour found since the start of the 
algorithm. Note that this additional feedback to the best-so-far tour is another example of a 
daemon action of the ACO meta-heuristics. 
Update of Pheromone Trails 
The additional reinforcement of tour  bsT  is achieved by adding a quantity / bse C  to its arcs, 
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Note that in EAS the pheromone evaporation is implemented as in AS. 

 
2.3. Rank-Based Ant System 
Another improvement over AS (Bullnheimer,1999) is the rank-based version of AS ( rankAS ). 
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ranked ants and the ant that produced the best-so-far tour are allowed to deposit 
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where 1/r r
ij C   and 1/bs bs

ij C  .  

 
2.4 Max- Min  Ant System 
Max-Min Ant System (MMAS) (St ü tzle & Hoos, 2000) introduces some main 
modifications with respect to AS. First, it strongly exploits the best tours found: only either 
the iteration-best ant, that is, the ant that produced the best tour in the current iteration, or 
the best-so-far ant is allowed to deposit pheromone. Unfortunately, such a strategy may lead 
to a stagnation situation in which all ants follow the same tour, because of the excessive 
growth of pheromone trails on arcs of a good, although suboptimal, tour. To counteract this 
effect, a second modification introduced by MMAS is that it limits the possible range of 
pheromone trail values to the interval min max[ , ]  . Second, the pheromone trails are 
initialized to the upper pheromone trail limit, which, together with a small pheromone 
evaporation rate, increases the exploration of tours at the start of the search. Finally, in 
MMAS, pheromone trails are reinitialized each time the system approaches stagnation or 
when no improved tour has been generated for a certain number of consecutive iterations. 
Update of Pheromone Trails 
After all ants have constructed a tour, pheromones are updated by applying evaporation as 
in AS, followed by the deposit of new pheromone as follows: 
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where 1/best best
ij C  . The ant which is allowed to add pheromone may be either the best-

so-far, in which case 1/best bs
ij C  , or the iteration-best, in which case 1/best ib

ij C  , 

where ibC  is the length of the iteration-best tour. In general, in MMAS implementations 
both the iteration-best and the best-so-far update rules are used in an alternate way. 
Obviously, the choice of the relative frequency with which the two pheromone update rules 
are applied has an influence on how greedy the search is: When pheromone updates are 
always performed by the best-so-far ant, the search focuses very quickly around bsT , 
whereas when it is the iteration-best ant that updates pheromones, then the number of arcs 
that receive pheromone is larger and the search is less directed. 
Pheromone Trail Limits 
In MMAS, lower and upper limits min  and max  on the possible pheromone values on any 
arc are imposed in order to avoid earlier searching stagnation. In particular, the imposed 



New Advances in Machine Learning214

 

pheromone trail limits have the effect of limiting the probability ijp  of selecting a city j  

when an ant is in city i  to the interval min max[ , ]p p , with min max0 1ijp p p    . Only 

when an ant k  has just one single possible choice for the next city, that is  1k
iN  , we have 

min max 1p p  .  
It is easy to show that, in the long run, the upper pheromone trail limit on any arc is 
bounded by *1/ C , where *C  is the length of the optimal tour. Based on this result, 

MMAS uses an estimate of this value, 1/ bsC , to define max : each time a new best-so-far 
tour is found, the value of max  is updated. The lower pheromone trail limit is set to 

min max /   , where   is a parameter (Stützle & Hoos, 2000).  
Pheromone Trail Initialization and Re-initialization 
At the start of the algorithm, the initial pheromone trails are set to an estimate of the upper 
pheromone trail limit. This way of initializing the pheromone trails, in combination with a 
small pheromone evaporation parameter, causes a slow increase in the relative difference in 
the pheromone trail levels, so that the initial search phase of MMAS is very explorative.  
Note that, in MMAS, pheromone trails are occasionally re-initialized. Pheromone trail re-
initialization is typically triggered when the algorithm approaches the stagnation behaviour 
or if for a given number of algorithm iterations no improved tour is found.  

 
3. ACO for Track Initiation of Bearings-only multi-target tracking 
 

3.1 Problem Presentation 
Bearings-only multi-target tracking (BO-MTT) (Nardone, 1984 ; Dogancay, 2004, 2005) in a 
bistatic system can be described as: given a time history of noise-corrupted bearing 
measurements from two observers, the objective is to obtain optimum estimation of the 
positions, velocities and accelerations of all targets. Generally, the whole process of target 
tracking includes track initiation, track maintenance and track deletion. To the best of our 
knowledge, however, many reported literature mainly focused on the track maintenance, i.e. 
target tracking, without considering the track initiation process, after the motion of each 
target is modelled. Actually, track initiation plays an important role in evaluating the 
performance of subsequent target tracking, and improperly initiated tracks may either lead 
to target loss or the increase of consumption of limited resources.  
In the case of multi-sensor-multi-target BOT, for instance, two-sensor-two-target BOT at a 
given scan, four Line of Sights (LOSs) are available alone to determine which LOS belongs 
to some target of interest. Usually, such a problem can also be dealt with the general track 
initiation techniques widely used in the radar tracking field through intersecting these LOSs 
to obtain a group of candidates of true targets’ position points. However, such an operation 
will result in some intersections including both the true “target positions” and the virtual 
“target position” called “ghost”, as shown in Fig.2. These “ghosts”, in fact, do not belong to 
any target (denoted by position points 3 and 4). Due to this fact, the origin uncertainty of 
obtained position candidates should be discriminated and this issue forms the topic of this 
section. In addition, such a problem becomes harder to handle in the presence of clutter.  
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Fig. 2. The generated “ghosts” in case of two-sensor-two-target BOT 

 
3.2 Motive 
In the image detection field, the Hough transform (H-T) has been recognized as a robust 
technique for line or curve detection and also have been largely applied by scientific 
community (Bhattacharya, 2002; Shapiro, 2005). The basic idea of H-T is to transform a point 
( , )x y in the Cartesian coordinate system onto a curve in the ( , )  parameter space, which 
is formulated as  
 

cos sinx y                                                              (9) 
where  is the distance from the line through ( , )x y  to the origin, and   is the angle to the 

normal with the x  axis. The angle   varies from 00  to 0180 , while the   may be either 
positive or negative.  
So, it is observed that, if a set of points in the Cartesian coordinate lie on the same line, all 
curves each corresponding to a point must intersect at a same point denoted by 0 0( , )  in 
the parameter space. Inspired by this phenomenon, the H-T technique can be utilized to 
initialize the track of target which makes a uniform rectilinear motion. 

 
3.3 Solution to Multi-Target Track Initiation by ACO 
In this section, we will investigate the problem of multi-target track initiation. First, a 
objective function is presented to describe the property of the multi-target track initiation. 
Second, a novel ACO algorithm, called different tasks of ants, is modelled to initiate the 
tracks of interest. 
As noted before, if there are n  curves in the parameter space, at most 2

nC  intersections are 
obtained in general. However, in a real tracking scenario, these curves will not strictly 
intersect the point but several points distributed in the parameter space due to the existence 
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or if for a given number of algorithm iterations no improved tour is found.  
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target tracking, without considering the track initiation process, after the motion of each 
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performance of subsequent target tracking, and improperly initiated tracks may either lead 
to target loss or the increase of consumption of limited resources.  
In the case of multi-sensor-multi-target BOT, for instance, two-sensor-two-target BOT at a 
given scan, four Line of Sights (LOSs) are available alone to determine which LOS belongs 
to some target of interest. Usually, such a problem can also be dealt with the general track 
initiation techniques widely used in the radar tracking field through intersecting these LOSs 
to obtain a group of candidates of true targets’ position points. However, such an operation 
will result in some intersections including both the true “target positions” and the virtual 
“target position” called “ghost”, as shown in Fig.2. These “ghosts”, in fact, do not belong to 
any target (denoted by position points 3 and 4). Due to this fact, the origin uncertainty of 
obtained position candidates should be discriminated and this issue forms the topic of this 
section. In addition, such a problem becomes harder to handle in the presence of clutter.  
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3.2 Motive 
In the image detection field, the Hough transform (H-T) has been recognized as a robust 
technique for line or curve detection and also have been largely applied by scientific 
community (Bhattacharya, 2002; Shapiro, 2005). The basic idea of H-T is to transform a point 
( , )x y in the Cartesian coordinate system onto a curve in the ( , )  parameter space, which 
is formulated as  
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where  is the distance from the line through ( , )x y  to the origin, and   is the angle to the 

normal with the x  axis. The angle   varies from 00  to 0180 , while the   may be either 
positive or negative.  
So, it is observed that, if a set of points in the Cartesian coordinate lie on the same line, all 
curves each corresponding to a point must intersect at a same point denoted by 0 0( , )  in 
the parameter space. Inspired by this phenomenon, the H-T technique can be utilized to 
initialize the track of target which makes a uniform rectilinear motion. 

 
3.3 Solution to Multi-Target Track Initiation by ACO 
In this section, we will investigate the problem of multi-target track initiation. First, a 
objective function is presented to describe the property of the multi-target track initiation. 
Second, a novel ACO algorithm, called different tasks of ants, is modelled to initiate the 
tracks of interest. 
As noted before, if there are n  curves in the parameter space, at most 2

nC  intersections are 
obtained in general. However, in a real tracking scenario, these curves will not strictly 
intersect the point but several points distributed in the parameter space due to the existence 
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of measurement error. Even so, these points are still distributed in a small region, and thus 
such a small area could be deemed as an objective function to be optimized.  
For the case of two given tracks, the corresponding intersections in the parameter space are 
plotted in Fig.3, and for the upper left expanded subfigure, which corresponds to target 1, 
the minimum and maximum values of   could be obtained and then denoted by min and 

max , respectively. Similarly, the related minimum and the maximum values of   are also 
found and denoted by min  and max , respectively. 
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Fig. 3. A case of determination of objective function in the parameter space 
As a result, two rectangular blocks are formed and the area of each is calculated as  
 

max min max min( ) ( )i i i i
iS       ,                                              (10) 

and the objective function J  is defined as  
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where 1 2 3 4r r r r    or 1 2 3 4m m m m    is the possible track in the track space  , M is 
the number of tracks to be initialized. 
Afterwards, the ants of different tasks will be investigated, and it has the following 
characteristics: 
1) The number of tasks is equal to the one of tracks to be initiated, or equal to the one of 

targets of interest.  
2) The traditional ACO algorithm builds solutions in an incremental way, but the 

proposed system of different tasks of ants builds solutions in parallel way. Especially, 
in the proposed system of ants of different tasks, the thought of both collaboration and 
competition between ants is considered and introduced. For instance, ants of the same 
task search for foods in a collaborative way, while ants of different tasks will compete 
with each other during establishing solutions.  

 

3) Ants of the same task are dedicated to finding their best solution, and a set of all best 
solutions found by ants of different tasks constitute the solutions to Eq. (11) we 
describe.  

4) In the system of ants of different tasks, the search space depends not only on the 
measurement returns at the next scan but also on the prior knowledge of target motion. 

 
The determination of search space 
In the case of bearings-only two-sensor- M -target tracking, the sampling data of the first 
four scans are utilized sequentially to initiate tracks, and then total four search spaces, i.e., 

1 , 2 , 3 , and 4 , are obtained sequentially. Suppose that the prior knowledge about 
target motion, such as the minimum and maximum velocities denoted by minv and 

maxv respectively, is known and then utilized to construct an annular region whose inner and 
outer radiuses are determined by 1 min|| ||r T v  and 2 max|| ||r T v , respectively, where T  
denotes the sampling interval. For instance, if an ant is now located at position i  in 1 , 
then the ant will visit the next position located in the shadow section covered by both the 
annular region and 2 , which is denoted by 2

i   in Fig.4.  
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Fig. 4. The determination of search spaces  
 
Track Candidate Construction Using the Ants of Different Tasks  
Initially, M  ants of different tasks are placed randomly on position candidates in the first 
search space 1 , then each ant of a given task visits probabilistically the position candidate 
in the next search space. Suppose that an ant of a given task s  is now located at position i  
in i

i
  (1 3i  ), then the ant will visit position j  in the next search space by applying the 

following probabilistic formula: 
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of measurement error. Even so, these points are still distributed in a small region, and thus 
such a small area could be deemed as an objective function to be optimized.  
For the case of two given tracks, the corresponding intersections in the parameter space are 
plotted in Fig.3, and for the upper left expanded subfigure, which corresponds to target 1, 
the minimum and maximum values of   could be obtained and then denoted by min and 

max , respectively. Similarly, the related minimum and the maximum values of   are also 
found and denoted by min  and max , respectively. 
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Fig. 3. A case of determination of objective function in the parameter space 
As a result, two rectangular blocks are formed and the area of each is calculated as  
 

max min max min( ) ( )i i i i
iS       ,                                              (10) 

and the objective function J  is defined as  
 

1 2 3 4( )
1

1 2 3 4 1 2 3 4

min

       .    ,
               1,..., 4;

M

r r r r r
r

k k

J S

s t r m r r r r m m m m
k

  




        



,        (11) 

where 1 2 3 4r r r r    or 1 2 3 4m m m m    is the possible track in the track space  , M is 
the number of tracks to be initialized. 
Afterwards, the ants of different tasks will be investigated, and it has the following 
characteristics: 
1) The number of tasks is equal to the one of tracks to be initiated, or equal to the one of 

targets of interest.  
2) The traditional ACO algorithm builds solutions in an incremental way, but the 

proposed system of different tasks of ants builds solutions in parallel way. Especially, 
in the proposed system of ants of different tasks, the thought of both collaboration and 
competition between ants is considered and introduced. For instance, ants of the same 
task search for foods in a collaborative way, while ants of different tasks will compete 
with each other during establishing solutions.  

 

3) Ants of the same task are dedicated to finding their best solution, and a set of all best 
solutions found by ants of different tasks constitute the solutions to Eq. (11) we 
describe.  

4) In the system of ants of different tasks, the search space depends not only on the 
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and J  is a random variable selected according to the following probability distribution  
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where ,
s
i j  denotes the pheromone amount deposited by ants of task s on trail ( ,i j ), ,i j  is 

the total pheromone amount deposited by all ants of different tasks on trail ( ,i j ),  shows 
the repulsion on the foreign pheromones left on the trail ( ,i j ), q  is a random number 
uniformly distributed between 0 and 1, and 0q  is a parameter which determines the relative 
importance of the exploitation of good solutions versus the exploration of search spaces. 
According to the search spaces discussed above, Fig. 5 plots the process of how the heuristic 
value is calculated from search spaces 1 to 2 , namely, if an ant will move from positions 
i  to j ,  the corresponding heuristic value can be defined as 
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Fig. 5. The calculation of heuristic value 

 

Update of Pheromone  
The pheromone update is performed in two phases, namely, local update and global update. 
While building a solution, if an ant of task s  carries out the transition from positions i  to j , 
then the pheromone level of the corresponding trail is changed in the following way: 
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where 0
s  is the initial pheromone level of ants of task s . 

Once all ants of different tasks at a given iteration have visited four candidate positions each 
from different sampling indices, the pheromone amount on each established track will be 
updated globally. Here, we use the best-so-far-solution found by ants of the same task, i.e. 
the best solution found from the start of the algorithm run, to update the corresponding 
pheromone trail. We adopt the following rule 
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where ,
,
s k
i j  is the pheromone amount that ant k  of task s  deposits on the trail ( ,i j ) it has 

traveled at the current iteration, and p  is the number of ants. In the case of bearings-only 

multi-sensor-multi-target tracking, ,
,
s k
i j  is set to a constant. 

 
4. A Comparison of ACO-Based Methods for Track Initiation 
 

4.1 The Problem 
Two cases are investigated here, namely two and three tracks’ initiation problems. For each 
scenario, the performance of track initiation is investigated both in clutter-free environments 
and in clutter environments, respectively.  
Two fixed sensors used to measure the targets’ bearings are located at ( 0,0 ) and (18 ,0km ) 
respectively in a surveillance region. The standard deviation of the bearing measurements 
for each sensor is taken as 00.1 , and the sampling interval is set to be 10T s . The case in 
which each target makes a uniform rectilinear motion is considered, and the initial state of 
each target is illustrated in Table 1.  

Scenarios Targets 
x  y  x  y  

(km) (km) (m/s) (m/s) 

1 
1 60 30 50 -100 
2 80 60 150 -150 

2 
1 60 30 50 -100 
2 80 60 150 -150 
3 60 50 80 -120 

Table 1. The initial position and velocity of each target in the two considered scenarios 
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where ,
s
i j  denotes the pheromone amount deposited by ants of task s on trail ( ,i j ), ,i j  is 

the total pheromone amount deposited by all ants of different tasks on trail ( ,i j ),  shows 
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uniformly distributed between 0 and 1, and 0q  is a parameter which determines the relative 
importance of the exploitation of good solutions versus the exploration of search spaces. 
According to the search spaces discussed above, Fig. 5 plots the process of how the heuristic 
value is calculated from search spaces 1 to 2 , namely, if an ant will move from positions 
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Fig. 6. The target position candidates in a “clutter-free” environment (left: Scenario 1, right: 
Scenario 2) 
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Fig. 7. The target position candidates in clutter environments (left: Scenario 1, right: Scenario 

2) 
Figs.6 and 7 depict a part of position candidates obtained by intersecting LOSs at each scan, 
and our object is to discriminate the true “positions” of each target of interest. Here, we use 
two ACO-based techniques, namely the Ant System (called the traditional ACO) and the 
system of ants of different tasks (called the proposed ACO). 
Other parameters related to the two ACO-based methods are illustrated in Table 2  

Parameter                                                 
Value 

Parameter                                                 
Value 

                                                                 0.01                                                        0.03 
                                                                 0.2 M                                                       23M  
                                                                  2 min| |v                                                  100 /m s  
                                                                 0.8 max| |v                                                  400 /m s  

0q                                                                0.7 max| |a                                                   215 /m s  

0                                                                0.05 N                                                         50 
Table 2. The Parameter Settings for ACO-related Methods 

 
 
 

 

4.2 Evaluation Indices 
Two performance indices are introduced to evaluate the system of ants of different tasks, i.e.   
The probability of false track initiation: assuming N  Monte-Carlo runs are performed, we 
define the probability of false track initiation as 
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where if  denotes the number of false initiated tracks at the i th Monte-Carlo run, and in  is 
the total number of initiated tracks.  
The probability of correct initiation of at least j  tracks: if at least j  (1 j M  ) tracks are 
initiated correctly, its corresponding probability is  
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at the i th Monte-Carlo run. 

 
4.3 Results  
All results in Tables 3 to 6 are averaged over 10,000 Monte-Carlo runs. According to the 
evaluation indices we introduce, the traditional ACO algorithm performs as well as the 
proposed one, as illustrated in Tables 3 and 4, in clutter-free environments. However, in the 
presence of clutter, the proposed ACO algorithm shows a significant improvement over the 
traditional one with respect to the probability of false track initiation, as shown in Tables 5 
and 6.  

 

Evaluation indices The traditional ACO The proposed ACO 

Pro. of false track initiation ( F ) 0.0001 0.0002 

Pro. of correct initiation 
of at least j tracks( jC ) 

1C  1.0000 1.0000 

2C  0.9998 0.9997 

Table 3. Performance comparison for two-track-initiation problem in clutter-free 
environments 
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Fig. 6. The target position candidates in a “clutter-free” environment (left: Scenario 1, right: 
Scenario 2) 
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2) 
Figs.6 and 7 depict a part of position candidates obtained by intersecting LOSs at each scan, 
and our object is to discriminate the true “positions” of each target of interest. Here, we use 
two ACO-based techniques, namely the Ant System (called the traditional ACO) and the 
system of ants of different tasks (called the proposed ACO). 
Other parameters related to the two ACO-based methods are illustrated in Table 2  
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4.3 Results  
All results in Tables 3 to 6 are averaged over 10,000 Monte-Carlo runs. According to the 
evaluation indices we introduce, the traditional ACO algorithm performs as well as the 
proposed one, as illustrated in Tables 3 and 4, in clutter-free environments. However, in the 
presence of clutter, the proposed ACO algorithm shows a significant improvement over the 
traditional one with respect to the probability of false track initiation, as shown in Tables 5 
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Evaluation indices The traditional ACO The proposed ACO 

Pro. of false track initiation ( F ) 0.0001 0.0002 

Pro. of correct initiation 
of at least j tracks( jC ) 
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Table 3. Performance comparison for two-track-initiation problem in clutter-free 
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Evaluation indices The traditional ACO The proposed ACO 

Pro. of false track initiation ( F ) 0.0048 0.0046 

Pro. of correct initiation of 
at least j tracks( jC ) 

1C  1.0000 1.0000 

2C  1.0000 1.0000 

3C  0.9857 0.9861 

Table 4. Performance comparison for three-track-initiation problem in clutter-free 
environments 
 

Evaluation indices The traditional ACO The proposed ACO 

Pro. of false track initiation ( F ) 0.0348 0.0107 

Pro. of correct initiation 
of at least j tracks( jC ) 

1C  1.0000 1.0000 

2C  0.9787 0.9997 

Table 5. Performance comparison for two-track-initiation problem in clutter environments 
 

Evaluation indices The traditional ACO The proposed ACO 

Pro. of false track initiation ( F ) 0.0672 0.0380 

Pro. of correct initiation of 
at least j tracks( jC ) 

1C  1.0000 1.0000 

2C  0.9594 1.0000 

3C  0.9267 0.9861 

Table 6. Performance comparison for three-track-initiation problem in clutter environments 
 
Among 10,000 Monte-Carlo runs, only the cases of all tracks being initiated successfully are 
investigated and called effective runs later. For the objectivity of comparison, we select the 
worst case, in which the maximum running time for each ACO algorithm is evaluated, from 
the effective runs.  

 

Fig. 8 depicts the trends of objective function evolution with the increasing number of 
iterations in scenario 2. Compared with the traditional ACO algorithm, the proposed one 
requires fewer iterations for convergence in clutter-free or clutter environments. According 
to Tables 3 and 4, although the performance of the traditional ACO algorithm is comparable 
to that of the proposed one, we find that the proposed ACO one seems more practical due to 
less running time needed. Figs. 9 and 10 depict varying curves of pheromone on the true 
targets’ tracks, it is observed that the amount of pheromone on each “true” track increases in 
a moderate way, which means most ants prefer choosing these tracks and regarded them as 
optimal solutions.  
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Fig. 8. Objective function curves (left: In clutter-free environments; right: In clutter 
environments) 
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Fig. 9. Pheromone curves in clutter-free environments (left: The proposed ACO; right: The 
traditional ACO) 
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Fig. 8. Objective function curves (left: In clutter-free environments; right: In clutter 
environments) 
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Fig. 9. Pheromone curves in clutter-free environments (left: The proposed ACO; right: The 
traditional ACO) 
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Fig. 10. Pheromone curves in clutter environments (left: The proposed ACO; right: The 
traditional ACO) 

 
5. Conclusion 
 

This chapter mainly aims to introduce some widely used ACO algorithms and their origins, 
such as the AS, EAS, MMAS, and so on. It is found that all concerns are focused on the 
pheromone update strategy. Some uses the best-so-far-ant or the iteration-best ant 
independently/interactively to update the trail that ants travelled. Meanwhile, the update 
law may differ a bit for different ACO algorithms. Among the four ACO algorithms, two 
versions have received great popularities in various applications, i.e. AS and MMAS. 
Another contribution in this chapter is the extension of the general ACO algorithm to the 
system of ants of different tasks, and its behaviour is modelled and implemented in the 
track initiation problems. Simulation results are also presented to show the effectiveness of 
the novel ACO algorithm. According to the example presented in this chapter, we believe 
that the general framework of AS can be modified to solve various optimal or non-optimal 
problems. 
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Fig. 10. Pheromone curves in clutter environments (left: The proposed ACO; right: The 
traditional ACO) 

 
5. Conclusion 
 

This chapter mainly aims to introduce some widely used ACO algorithms and their origins, 
such as the AS, EAS, MMAS, and so on. It is found that all concerns are focused on the 
pheromone update strategy. Some uses the best-so-far-ant or the iteration-best ant 
independently/interactively to update the trail that ants travelled. Meanwhile, the update 
law may differ a bit for different ACO algorithms. Among the four ACO algorithms, two 
versions have received great popularities in various applications, i.e. AS and MMAS. 
Another contribution in this chapter is the extension of the general ACO algorithm to the 
system of ants of different tasks, and its behaviour is modelled and implemented in the 
track initiation problems. Simulation results are also presented to show the effectiveness of 
the novel ACO algorithm. According to the example presented in this chapter, we believe 
that the general framework of AS can be modified to solve various optimal or non-optimal 
problems. 
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1. Introduction     
 

As is known to us, common Euclidean distance based SVMs are easily influenced by outliers 
in given samples and might subsequently cause big prediction errors in testing processes. 
Therefore, many scholars propose various preprocessing methods such as whitening or 
normalizing the data to a sphere shape to remove the outliers and then call the routine SVM 
methods to build a more reasonable machine. However, since Euclidean distance is often 
sub-optimal especially in high dimension learning problem and might cause the learning 
machine fail due to the ill-conditioned Gram kernel, then it is necessary to find some more 
efficient and robust way to resolve the problem, which is the motivation of this chapter.  
The Mahalanobis distance is superior to Euclidean Distance in handling with outliers and is 
widely used in statistics and machine learning area. Currently there are some methods in 
building SVMs combined with Mahalanobis distances. Some of them use it in the kernel and 
replace common kernel by a Mahalanobis one in SVMs. Some of them use it in 
preprocessing phase to remove the outlier first and then build SVMs using common 
methods. Others use it in the postprocessing phase to extract key support vectors for 
speedup and efficiency. Most of them achieve superior performances compared with SVM 
counterpart. However, it should be pointed out that the complexity of the combined 
algorithm is the most concerned factor in building such an algorithm.  
As is known to us, none of them incorporates the Mahalanobis distance into models, which 
tradeoff the complexity and performance in the same algorithm meantime and make the 
algorithm more robust. The obvious feature of this new method is that there is no more 
necessary to remove the outlier first, since it is already considered and will be identified 
automatically in the model. It is also expected to improve and simplify the whole learning 
process efficiently.  
One Class Classification (OCC) (Scholkopf, 2001) now becomes an active topic in machine 
learning domain. One Class Support Vector Machines (OCSVM) is firstly proposed via 
constructing a hyperplane in kernel feature space which separates the mapped patterns 
from the origin with maximum margin. Support vector domain description (SVDD) (Tax, 
1999) is another popular OCC method, which seeks the minimum hypersphere that encloses 
all the data of the target class in a feature space. In this way, it finds the descriptive area that 
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covers the data and excludes the superfluous space that results in false alarms existed in 
OCSVM.  
However, although OCSVM does provide good representation for the classes of interest, it 
overlooks the discrimination issue between them. Moreover, the hypersphere model of 
SVDD is not flexible enough to give a tight description of the target class generally.  
Therefore, in our previous works, we proposed two Mahalanobis distance based learning 
machine called QP-MELM and QP-MHLM respectively via solving their duals. However, as 
is suggested in (Löfberg, 2004), if both the primal form and dual form of an optimization 
problem are solvable, then the primal form is more commendable for approximation ability. 
Therefore, (Wei, 2007A) rewrote the MELM as a Second Order Cone Programming (SOCP) 
representable form and proposed a SOCP-MELM for class description. Applications to real 
world UCI benchmark datasets show promising results. 
Recently, Wei etc al proposed a novel learning concept called enclosing machine learning 
(Wei, 2007D), which imitates the human being’s cognition process, i.e. cognizing things of 
the same kind (To obtain a minimum bounding boundary for class description) and 
recognizing unknown things via point detection. Wei illustrated the concept using 
minimum volume enclosing ellipsoid learner for one class description and extended it to 
imbalanced data set classification. Except this, (Wang, 2005) and (Liu, 2006) proposed two 
SVDD based pattern classification algorithms (called SSPC and MEME respectively for 
simplicity) for imbalanced data set, which can also been classified to enclosing machine 
leaning’s framework .  
This chapter will be organized as follows. First, review of Mahalanobis distance\property 
and related learning methods will be briefed. Then, the new optimization models based on 
linear programming for Data Description, Classification incorporating Mahalanobis distance 
will be proposed. Third, benchmark datasets experiments for classification and regression 
will be investigated in detail. Finally, conclusions and discussions will be made. 

 
2. The Mahalanobis Distance 
 

2.1 Definitions 
Let X  be a m N  sample matrix containing N  random observations 

, 1, 2, ,m
i R i N x  . The sample mean μ  and covariance matrix Σ  can be concisely 
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where 1  is a N  dimensional all one vector. 
If the covariance matrix is singular, it is difficult to calculate the inverse of Σ . Instead, we 

can use the pseudoinverse Σ  to approximate as 1 T Σ PΣ P  using inverse of nonzero 

 

eigenvalues. This gives the minimum squared error approximation to the true solutions. It 
should be noted that pseudoinverse restricts inversion to the range of the operator, i.e. the 
subspace where it is not degenerate. This is often unavoidable in high dimensional feature 
spaces. If the covariance is real symmetric and positive semidefinite, then the covariance 

matrix can be decomposed as TΣ P GP , and thus 1 1T Σ P G P  . Then the 
Mahalanobis distance from a sample x  to the population X  is 
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2.2 The Mahalanobis Distance in Kernel Feature Space 
In implicit high-dimensional feature space defined by kernel functions, the Mahalanobis 
distance can be represented in terms of the dot products of data maps. Suppose 

, ,  X μ Σ  are the sample matrix, mean vector, and covariance matrix in the feature 
space, respectively. The centered kernel matrix is defined as 
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where ( , )TkK X X , ix  is the i th sample of X , M ZKZ  is symmetric and 

semidefinite matrix and thus 2M  can be calculated via singular value decomposition, i.e. 
TM UΛU , 2 2 T M UΛ U . 

 
Using singular value decomposition method, we can easily conclude following theorem: 

Theorem 1: Let the eigenstructures of the centered matrix CK  be T
C K Q ΩQ , then the 

covariance matrix Σ  can be diagonalized as follows: 
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Notice that the eigenvectors necessarily lie in the span of the centered data, thus P  can be 
written as following linear combination 
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And this ends the complete proof of Theorem 1. 
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As we mentioned before, there often exists zero eigenvalues condition in high dimensional 
feature spaces, (7) is represented to approximate the true inverse of sample covariance 
matrix. Later, we will introduce another regularization method for avoiding the zero 
eigenvalues condition in Section 3.   

 
3. Mahalanobis One Class SVMs 
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is a quadratic convex optimization problem, where α  is the dual variable, T K X X  is 
a kernel matrix. By using the Mahalanobis distance metric instead of Euclidean distance 
metric, the primal now becomes: 
 

1

, 0, 1

1

1 1min
2

,
. .

0, 1, 2, , .

i

N
T

iw i

T
i i

i

N
x

s t
i N

 
 



 









 

  


 

w Σ w

w Σ


                                     (23) 

 
where Σ  is the sample covariance matrix. 

Using w Σu , then the separation hyperplane is now T x u  and the distance to the 

origin becomes
T


u Σu

. Therefore, (23) is equivalent to  
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The dual is as follows using optimality conditions: 
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The dual is as follows using optimality conditions: 
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Note that the kernel trick is  
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Using the kernel trick and (21), the kernel Mahalanobis hyperplane learning machine can be 
written in kernel form as: 
 

21max
2

1
. .

1.

T T

T

N

s t N



  

 

α
α KQ Ω QKα

0 α 1

α 1

                                      (27) 

 
where the symbols are defined as previously noted. 
We can easily conclude that (13) is a QP problem, thus can be efficiently solved via 
YALMIP[12]. 
As is mentioned before, there is uncertainty in the estimation of Σ  in general. We can 
assume that Σ  is only known to be within the set [5] 
 

0{ : }
F

r Σ Σ Σ                                                   (28) 

 
Suppose 0 r  Σ Σ Σ , then according to the Cauchy-Schwarz inequality [14], we get 

2 2 2 2
T T

F
     u Σu u Σu u Σ u u u  

This holds of compatibility of the Frobenius matrix norm and the Euclidean vector norm 

and because 1
F

 Σ . For Σ  the unity matrix, this upper bound is attained. 

Thus we have 
 

 

0

0

1:

0

max ( max )

( )
FF

T T

r

T

r

r

  
  

 

ΣΣ Σ Σ
u Σu u Σ Σ u

u Σ I u
                                (29) 

 
where 0r   is fixed and 

F
  denotes the Frobenius norm, 0Σ is estimated via (1).  

Then the primal in (10) can be modified as 
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where 0

r r Σ Σ I , now the sample covariance matrix is always nonsingular for 0r  . 
Actually, this is a regularization method.  
The dual is now 
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By using the Woodbury formula [10] 
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and (4), we obtain 
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Using the kernel trick, (17) then becomes 
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where r r M I ZKZ . Again, we get a standard QP problem, and the inverse of the real 

symmetric and positive definite matrix rM can be exactly estimated using stable and 
efficient eigenvalue decomposition method. 

 
3.2 Mahalanobis Data Description Machine 
Given a set of unlabeled patterns 1 2{ , , , }Nx x x , the SVDD first maps them to the 

feature space   via a nonlinear map  . In the sequel, the SVDD is obtained via solving 
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where R  is radius, 0i   is slack variable, c  is the center, ( )d   is the given distance 

metric (the default is the Euclid norm) , C  is a tradeoff that controls the size of sphere and 
the errors, N  is the number of samples. 
The corresponding dual  

 

0 1 1 1

1

max ( , ) ( , )

0 , 1, 2, ,
. .

1.

i

N N N

i i i i j i j
i i j

i
N

i
i

k k

C i N
s t


  






  





  

 

 



x x x x

                        (36) 

 
is a convex optimization problem, where 0i   is dual variable, ( )k   is a kernel function 
that satisfies Mercer condition.  
 
By using the Mahalanobis distance metric instead of Euclidean distance metric, the primal 
now becomes: 
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where Σ  is the sample covariance matrix. 
 
The dual is as follows using optimality conditions: 
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Using the kernel trick, and following equations, 
 

( )

( , )
k

T
i ikx X x X


,

1

N

i i
i




c x ,                              (39) 

 
the kernel Mahalanobis Ellipsoidal learning machine can be written in kernel form as: 
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the kernel Mahalanobis Ellipsoidal learning machine can be written in kernel form as: 
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Accordingly we can obtain the following Mahanlanobis distance of the sample x  from the 
center c  in the feature space: 
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The parameters , iR   can be determined by the following relations via KKT conditions: 
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Again, we can assume that Σ  is only known to be within the set 
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where 0r   is fixed and called regularization constant and 
F
  denote s the Frobenius 

norm, 0Σ  is estimated via (1).  
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Suppose 0 r  Σ Σ Σ . Then for any given v , according to the Cauchy-Schwarz 
inequality, we get 
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where 0
r r Σ Σ I , now the sample covariance matrix is always nonsingular for 0r  . 

Actually, this is a regularization method. 
The dual is now 
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where 0
r r Σ Σ I , now the sample covariance matrix is always nonsingular for 0r  . 

Actually, this is a regularization method. 
The dual is now 



New Advances in Machine Learning240

 

1 1

0 1 1 1

1

max

0 , 1,2, ,
. .

1.

i

N N N
T T

i i r i i j i r j
i i j

i
N

i
i

C i N
s t


  





 


  





  

 

 



x Σ x x Σ x

                      (47) 

 
By using the Woodbury formula 
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Using the kernel trick, (47) then becomes 
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where r r M I ZKZ . Again, the inverse of the real symmetric and positive definite 

matrix rM can be estimated via singular value decomposition. 
Note that above mentioned models are both QP based, which might converge slowly in 
large dataset case. In order to further reduce the model complexity of above Mahalanobis 
Distance based SVM, here we introduce a new linear programming based model for 
ellipsoidal data description. 
Let { ( ), 1, , }i i N x   be the images of the samples in feature space through mapping 

 .  We first center all the samples in feature space, and then we can build ellipsoidal 
machine centered at origin enclosing a majority of the imaged vectors. Then according to (5), 
the distance from any sample x to the origin can be kernelized as 
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The Lagrange function for the primal form will be as follows:  
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where , 0i i    are Lagrange multipliers or the dual variables. According to the KKT 

conditions, and equating the partial derivatives of Lwith respect to 2 , iR   to zero yields: 
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From (55), we get  
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From (56) and using , 0i i   , we can obtain 
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Using (57), and substituting (54), (55) into (53) results in the dual problem: 
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We can see that the optimization problem (58) is in a linear programming form. This LP 
form is superior to QP form in computational complexity. 
From the solution of (58), the samples with  0i   will fall inside the ellipsoid.  The 

samples with 0i  is called support vectors. Support vectors with i C  is called 
border support vectors. And the radius of the ellipsoid can be obtained using  
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via using any border support vectors svx .  
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0r   is fixed and called regularization constant and F  denotes the Frobenius norm.  

Then, the kernelized distance formula from any sample x to the origin is as follows: 
 

21 1
2 1 2 2

2

1( ) ( ) ( ) ( ) ( )T T
i r i i r i id x x x x r

N
   

       Ω I Ω Qk           (59) 

 
Therefore, the robust Mahalanobis data description in kernel form is 
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where 1 2: ( ( , ), ( , ), , ( , ))i i i N ik x x k x x k x xk  . 
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Accordingly, we can get the ellipsoidal radius function in robust form for any sample x , 
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4. Mahalanobis Classification SVMs 
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Accordingly, we can get the ellipsoidal radius function in robust form for any sample x , 
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4. Mahalanobis Classification SVMs 
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where d is the shortest distance from the hyper-ellipsoid to the closest target and outlier 

class samples, 1: T
Mz z z Σ  for any vector z . Note that the distance is now under 

Mahalanobis distance metric and d  act s just as the margin of the SVM. 
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Fig. 1.  Geometric illustrations of separation between two classes via different algorithms. (a) 
SVM. (b) Sphere shell separation  (c) Ellipsoidal shell separation. 
 
Obviously, there are many such hyper-ellipsoids which satisfy (63). An ideal criterion is to 

maximize the separation ratio 
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Now, the primal of Ellipsoidal shell separation in original space can be written as 
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where   is a constant, which controls the ratio of the radius to the separation margin. 

 

4.2 The Linear Programming Classification Machine 
Introducing the kernel trick, the primal form can be rewritten as follows: 
 

 
2 2

2 2

,

22 1 2

min

. .

R d

i i

R d

s t y R N d







 Ω Qk
                            (66) 

 
The robust kernelized primal version is 
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So as to allow misclassified samples, we introduce slack variables 0i  . Thus (66) can be 
modified as 
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Accordingly, the kernelized primal version is  
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And the robust kernel version is 
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And the robust kernel version is 
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In order to obtain the obtain the dual form, the for the primal form (69) will be as follows:  
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According to the KKT conditions, we will get following equalities: 
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Using (72)-(74), the Lagrange function for the primal form (69) is simplified into following 
form: 
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We can see that (75) is in a linear programming form. Therefore, we can easily solve it using 
any mature and stable LP solvers. And it is expected to be easily extended to large scale 
datasets. 
Accordingly, we can also conclude the dual form for (70) as follows: 
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5. Applications 
 

5.1 Mahalanobis One Class SVMs 
We investigate the initial performances of our proposed Mahalanobis Ellipsoidal Learning 
Machine (MELM) using three real-world datasets (ionosphere, heart and sonar) from the 
UCI machine learning repository. To see how well the MELM algorithm performs with 
respect to other learning algorithms, we compared the OCSVM, SVDD and MOCSVM 

algorithm using Gaussian kernels 
2( , ) exp( )k x y x y   .As for the MOCSVM, we 

only use one single RBF kernel for performance comparison.  
We treat each class as the “normal” data in separate experiments. We randomly choose 80% 
of points as training data and the rest 20% as testing data. We determined the optimal 
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values of   and C  for RBF kernels by 5-fold cross validation. For the regularization 
constant, we set it as 0.01. 
The datasets used and the results obtained by the four algorithms are summarized in Table 
1. We can notice that the performance of our proposed Mahalanobis Ellipsoidal Learning 
Machine is competitive with or even better than the other approaches for the three datasets 
studied. 
 

Table 1. Performance results of different algorithms for single class problems. Correctness 
ratio (%) is reported.  
 
From Table 1, we also see that, on all 3 datasets, the results obtained by the Mahalanobis 
distance based learning algorithm are slightly better than the corresponding results of the 
other two Euclidean distance based methods.  

 
5.2 Mahalanobis Classification Machine 
We tested the new algorithm and compared it to standard SVMs using several real-world 
datasets from the UCI machine learning repository. The results of MMEE and other three 
algorithms SVM, SSPC and MEME depend on the values of the kernel parameter  and the 
regularization parameter C . In addition, the performance of MMEE, SSPC and MMEE also 

depend on the constant that balances the volume and the margin. For simplicity, we set C  
to infinity for all four algorithms. Thus, we only considered hard margin MMEE, SSPC, 
MEME and SVM algorithms.  
For all the datasets, we used the 5-fold cross-validation method to estimate the 
generalization error of the classifiers. In the 5-fold cross-validation process, we ensured that 
each training set and each testing set were the same for all algorithms, and the same 

Gaussian kernel 
2( , ) exp( )k x y x y    was used. On each dataset, the value of the 

kernel parameter   for SVM was optimized to provide the best error rate using 5-fold 
cross-validation. As for MMEE, We investigate the robust version MMEE. And the 
regularization constant r was set as 0.03. For SSPC, MEME and MMEE, the kernel 
parameter   and the constant that balances the volume and the margin were optimized 
using grid based 5-fold CV method.  
The datasets used and the results obtained by all four algorithms are summarized in Table 1. 
As we can see, SSPC and MEME achieve the same or slightly better results than SVMs on all 
5 datasets. But our proposed MMEE method shows promising performances. The accuracy 
is commendably higher than the other three methods in the datasets studied in this paper. 

Dataset SVDD OCSVM MOCSVM MELM 
ionosphe

re 
+1 66.02 65.26 66.05 68.98 
-1 69.13 68.96 70.99 75.82 

heart 
+1 70.13 70.01 69.96 71.19 
-1 71.11 70.23 71.78 75.37 

sonar 
+1 92.98 92.10 93.29 96.49 
-1 89.73 89.38 90.49 94.32 

 

Table 2. Performance results of different algorithms. Error rate (%) is reported.  

 
6. Conclusions 
 

In this paper, we extended the support vector data description one class support vector 
machines via utilizing the sample covariance matrix information and using the Mahalanobis 
distance metric instead of Euclidean distance metric. The proposed Mahalanobis Ellipsoidal 
Learning Machine can be easily addressed as a robust optimization problem by introducing 
an uncertainty model into the estimation of sample covariance matrix. We propose a LP 
representable Mahalanobis Data Description Machine for one class classification. We also 
address a robust optimization problem by introducing an uncertainty model into the 
estimation of sample covariance matrix. The results of applications to the three UCI real 
world datasets show promising performances. 
We also proposed a LP based Minimum Mahalanobis Enclosing Ellipsoid (MMEE) pattern 
classification algorithm for generally two class dataset classification. The MMEE method can 
be solved in kernel form of LP. We also address a robust optimization problem by 
introducing an uncertainty model into the estimation of sample covariance matrix. Initial 
applications to several UCI real world datasets show promising performances. The initial 
results show that the proposed methods own both good description and discrimination 
character for supervised learning problems. Moreover, the data description with non-
hyperplane bounding decision boundary owns better discrimination performance than 
hyperplane counterpart in the context of supervising learning.  
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world datasets show promising performances. 
We also proposed a LP based Minimum Mahalanobis Enclosing Ellipsoid (MMEE) pattern 
classification algorithm for generally two class dataset classification. The MMEE method can 
be solved in kernel form of LP. We also address a robust optimization problem by 
introducing an uncertainty model into the estimation of sample covariance matrix. Initial 
applications to several UCI real world datasets show promising performances. The initial 
results show that the proposed methods own both good description and discrimination 
character for supervised learning problems. Moreover, the data description with non-
hyperplane bounding decision boundary owns better discrimination performance than 
hyperplane counterpart in the context of supervising learning.  
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1. Introduction

Recently, the linearization of a class of unknown discrete-time dynamic systems has achieved
considerable topics for the controller design. The unknown functions after system lineariza-
tion have been estimated by several methods including artificial intelligence techniques such
as neural networks, fuzzy logic systems and neurofuzzy networks. In a number of published
articles, the issues of system theoretic analysis have been introduced and addressed in the top-
ics of stabilization, tracking performance and the bounded parameters. For all of these cases,
the results are validated in the domain around the equilibrium point or state (9; 11). These
methods of linearization including local linearization, Taylor series expansion and feedback
linearization impose Lipschitz conditions (4; 6; 10; 14; 18). The closed-loop system stability
and tracking error have been analyzed in the case of neural network adaptive control (5; 7)
but during the learning phase the stability and convergence can not be ensured because of the
special conditions. The system stability or bounded signals analysis has been verified (1; 13)
and references therein. However, these nonlinear systems under control should be obtained
in the format as y(k + 1) = f (k) + g(k)u(k) when y(k) and u(k) are the system output and the
control input at time index k, respectively and f (k) and g(k) are unknown nonlinear functions.
The small learning rate is often defined to solve the stability problem but the convergence is
very slow. The discrete-time projection has been introduced for adaptive control systems in
(16). The node number of multi-layer neural networks can take more effect of closed-loop sta-
bility and tracking performance. In (15), the unknown nonlinear part has been compensated
by neural networks and the closed-loop system stability has been also guaranteed for a class
on discrete-time systems. Nevertheless, this algorithm needs the renovation when the oper-
ating point is changed. In the case of robust system, the dead-zone function has been applied
for feedback linearization systems (8) but this control algorithm are only limited for the sys-
tem with slow trajectory tracking. In this chapter, we discuss about the controller for a class of
nonlinear discrete-time systems with estimated unknown nonlinear functions by Muti-input
Fuzzy Rules Emulated Networks (MIFRENs). These nonlinear functions are occurred when
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the control law is constructed and they are completely unknown as a priori. All adjustable
parameters inside MIFRENs are automatically tuned by the proposed leaning algorithm. By
the theoretical analysis, these parameters are all bounded during the system operation with
out any request of off-line learning phase. The closed-loop tracking error is also bounded by
the universal function approximation of MIFREN.

2. Preliminaries

2.1 Formulation of Nonlinear discrete-time systems
In this work, we devote our interest in to the discrete-time systems which can be described by

y(k + 1) = f (p(k),u(k)), (1)

where f (·, ·) is an unknown nonlinear function, k is time index, y(k) ∈ R denotes the mea-
surable output, u(k) ∈ R is the control effort and p(k) = [y(k),y(k − 1), . . . ,y(k − n + 1),u(k −
1),u(k − 2), . . . ,u(k − m + 1)] when m ≤ n. For system design in the next section, these follow-
ing assumptions are still needed

Assumption : System derivative Let define two compact sets Ωy and Ωu for the system out-
put y and the control effort u, respectively. The derivative of f (·, ·) in (1) with respect
to the control effort u(k) is always existed ∀k = 1,2, · · · and 0 < | ∂ f (·,u)

∂u | ≤ ȳu when
y(·) ∈ Ωy and u(·) ∈ Ωu where ȳu is a finite positive value.

Assumption : Existence of controller For any desired trajectories r(k), let the ideal control
effort of the system (1) u∗(k) be existed by

u∗(k) = gu(p(k),r(k + 1)), (2)

when gu(·, ·) is a smooth function.

( )

Fig. 1. Illustration of compact sets

With the ideal control effort obtained by (2), the controlled system can provide the output to
be the desired trajectory as

r(k + 1) = f (p(k),u∗(k)). (3)

Let u∗(k)∈ Ωu∗ and r(k)∈ Ωr, for the output y(k)∈ Ωy such that Ωr ⊂ Ωy. The function gu(−)
is a one-to-one mapping function of Ωr into Ωu∗ , that is Ωu∗ ⊂ Ωu. With the last assumption,
gu(−) is smooth and Ωr is a compact set, then Ωu∗ must be a compact set also. The clearly
illustration is given in Fig. 1.

2.2 Function Approximation with MIFREN
In (2) and (3), the function approximation MIFREN property had been introduced. An un-
known nonlinear function fu(.) can be estimated by MIFREN as

fu(k) = βT Fµ(y(k), · · · ,y(k − n̂ − 1), · · · ,u(k − m̂ − 1)) + ε(k), (4)

where βT is the target linear parameter of MIFREN, Fµ(.) is the rule vector at MIFREN’s rule-
layer n̂ and m̂ are designed delay-order integers for y and u, respectively and ε(k) stands
for the MIFREN function approximation error. Eventually, the using function approximation
result of MIFREN can be given as

f̂u(k) = β̂T(k)Fµ(y(k), · · · ,y(k − n̂ − 1), · · · ,u(k − m̂ − 1)), (5)

when β̂(k) is the actual linear parameter vector of MIFREN. The vector β̂(k) can be automat-
ically tuned via the proposed algorithm as will be discussed in the next section. In this sub-
section, it will be shown that MIFREN has the property of a universal function approximation
using the Stone-Weierstrass theorem (1; 17).

Theorem 2.1 (Universal function approximation of MIFREN). Let Ω be a compact space of N
dimensions and let F be a set of real functions on a compact set Ω. If

(1) F is an algebra,

(2) F separates points on Ω, and

(3) F vanishes at no point on Ω,

then F is dense in C(Ω), the set of continuous real-valued function on Ω. In other words, for any ε̂ > 0
and any function f in C(Ω), there is a function f̂ in F such that | f (x)− f̂ (x)| < ε̂ for all x ∈ Ω.

Proof: The proof is omitted here moreover for the interested reader can refer to (2) and (3).

�

3. Controller design

In this section, the controller for system given in (1) is constructed with the approximated
linearization and MIFRENs approximation.

3.1 Control law based on system linearization
From the system equation described in (1), let use the second-order Taylor expansion with the
mean value theorem, we have

y(k + 1) = f (p(k),u(k − 1)) +
∂ f (p(k),u)

∂u

∣∣∣
u=u(k−1)

∆u(k)

+
1
2

∂2 f (p(k),u)
∂u2

∣∣∣
u=ūk

∆u2(k), (6)

where ūk = γu(k) + (1 − γ)u(k − 1) with 0 ≤ γ ≤ 1 and ∆u(k) = u(k)− u(k − 1). To simplify,
(6) can be rewritten as

y(k + 1) = f (p(k),u(k − 1)) + f1(p(k),u(k − 1))∆u(k) + f2(p(k), ūk)∆u2(k), (7)
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out any request of off-line learning phase. The closed-loop tracking error is also bounded by
the universal function approximation of MIFREN.
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where f (·, ·) is an unknown nonlinear function, k is time index, y(k) ∈ R denotes the mea-
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∂u | ≤ ȳu when
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With the ideal control effort obtained by (2), the controlled system can provide the output to
be the desired trajectory as

r(k + 1) = f (p(k),u∗(k)). (3)

Let u∗(k)∈ Ωu∗ and r(k)∈ Ωr, for the output y(k)∈ Ωy such that Ωr ⊂ Ωy. The function gu(−)
is a one-to-one mapping function of Ωr into Ωu∗ , that is Ωu∗ ⊂ Ωu. With the last assumption,
gu(−) is smooth and Ωr is a compact set, then Ωu∗ must be a compact set also. The clearly
illustration is given in Fig. 1.

2.2 Function Approximation with MIFREN
In (2) and (3), the function approximation MIFREN property had been introduced. An un-
known nonlinear function fu(.) can be estimated by MIFREN as

fu(k) = βT Fµ(y(k), · · · ,y(k − n̂ − 1), · · · ,u(k − m̂ − 1)) + ε(k), (4)

where βT is the target linear parameter of MIFREN, Fµ(.) is the rule vector at MIFREN’s rule-
layer n̂ and m̂ are designed delay-order integers for y and u, respectively and ε(k) stands
for the MIFREN function approximation error. Eventually, the using function approximation
result of MIFREN can be given as

f̂u(k) = β̂T(k)Fµ(y(k), · · · ,y(k − n̂ − 1), · · · ,u(k − m̂ − 1)), (5)

when β̂(k) is the actual linear parameter vector of MIFREN. The vector β̂(k) can be automat-
ically tuned via the proposed algorithm as will be discussed in the next section. In this sub-
section, it will be shown that MIFREN has the property of a universal function approximation
using the Stone-Weierstrass theorem (1; 17).

Theorem 2.1 (Universal function approximation of MIFREN). Let Ω be a compact space of N
dimensions and let F be a set of real functions on a compact set Ω. If

(1) F is an algebra,

(2) F separates points on Ω, and

(3) F vanishes at no point on Ω,

then F is dense in C(Ω), the set of continuous real-valued function on Ω. In other words, for any ε̂ > 0
and any function f in C(Ω), there is a function f̂ in F such that | f (x)− f̂ (x)| < ε̂ for all x ∈ Ω.

Proof: The proof is omitted here moreover for the interested reader can refer to (2) and (3).

�

3. Controller design

In this section, the controller for system given in (1) is constructed with the approximated
linearization and MIFRENs approximation.

3.1 Control law based on system linearization
From the system equation described in (1), let use the second-order Taylor expansion with the
mean value theorem, we have

y(k + 1) = f (p(k),u(k − 1)) +
∂ f (p(k),u)

∂u

∣∣∣
u=u(k−1)

∆u(k)

+
1
2

∂2 f (p(k),u)
∂u2

∣∣∣
u=ūk

∆u2(k), (6)

where ūk = γu(k) + (1 − γ)u(k − 1) with 0 ≤ γ ≤ 1 and ∆u(k) = u(k)− u(k − 1). To simplify,
(6) can be rewritten as

y(k + 1) = f (p(k),u(k − 1)) + f1(p(k),u(k − 1))∆u(k) + f2(p(k), ūk)∆u2(k), (7)



New Advances in Machine Learning254

when f1(p(k),u(k − 1)) = ∂ f (p(k),u)
∂u

∣∣∣
u=u(k−1)

and f2(p(k), ūk) =
1
2

∂2 f (p(k),u)
∂u2

∣∣∣
u=ūk

. By using (2)

and the second assumption mentioned in the previous section, f2(·, ·) can be given by

f2(p(k), ūk)∆u2(k) = f2(p(k),γu(k) + (1 − γ)u(k − 1))[u(k)− u(k − 1)]2, (8)

when u(k) can be obtained by

u(k) = gu(p(k),y(k + 1)). (9)

Substitute (9) into (8), thus f2(·, ·) can be simplified by

f2(p(k), ūk)∆u2(k) = f2(p(k),γgu(p(k),y(k + 1)) + (1 − γ)u(k − 1)),

×[gu(p(k),y(k + 1))− u(k − 1)]2,

= f̄2(p(k),y(k + 1)). (10)

By substituting (10) into (7), we have

y(k + 1) = f (p(k),u(k − 1)) + f1(p(k),u(k − 1))∆u(k) + f̄2(p(k),y(k + 1)),

= f3(p(k),y(k + 1)) + f1(p(k),u(k − 1))∆u(k), (11)

where f3(p(k),y(k + 1)) = f (p(k),u(k − 1)) + f̄2(p(k),y(k + 1)). In (11), clearly, we have been
forced with the causality problem. Fortunately, with the second assumption, the ideal control
effort u∗(k) can provide r(k + 1) as described in (3), thus we have

r(k + 1) = f3(p(k),r(k + 1)) + f1(p(k),u(k − 1))[u∗(k)− u(k − 1)]. (12)

To continue our design procedure, the ideal control effort u∗(k) can be obtained by

u∗(k) = u(k − 1) +
r(k + 1)− f3(p(k),r(k + 1))

f1(p(k),u(k − 1))
,

= u(k − 1) +
1

f1(p(k),u(k − 1))
r(k + 1)− f3(p(k),r(k + 1))

f1(p(k),u(k − 1))
, (13)

or
u∗(k) = u(k − 1) + f ∗1 (p(k))r(k + 1)− f ∗2 (p(k),r(k + 1)), (14)

when f ∗1 (p(k)) = 1
f1(p(k),u(k−1)) and f ∗2 (p(k),r(k + 1)) = f3(p(k),r(k+1))

f1(p(k),u(k−1)) . From the control law

given by (14), the singularity problem of 1
f1(p(k),u(k−1)) can be avoided by MIFREN approx-

imation which will be discussed later. Let us consider the ideal control effort in (14), thus
these nonlinear functions f ∗1 (·, ·) and f ∗2 (·, ·) are unknown. In this work, two MIFRENs are
constructed to approximate f ∗1 (·, ·) and f ∗2 (·, ·) by MIFREN1 and MIFREN2, respectively. We
have

u∗(k) = u(k − 1) + [β∗T
1 F1(p(k)) + ε1(k)]r(k + 1)− β∗T

2 F2(p(k),r(k + 1))− ε2(k), (15)

where F1(·) and F2(·) are rule-functions of MIFREN1 and MIFREN2, respectively, β∗1 =

[β∗1,1 β∗1,2 · · · β∗1,n1
]T , β∗2 = [β∗2,1 β∗2,2 · · · β∗2,n2

]T are ideal weight vectors, n1 and n2
denote number of rules for each MIFREN and ε1(·) and ε2(·) are approximation errors. Let

us neglect these errors and use the actual weight vector as β1(k) and β2(k) thus the proposed
control law can be given by

u(k) = u(k − 1) + [βT
1 (k)F1(p(k))]r(k + 1)− βT

2 (k)F2(p(k),r(k + 1)). (16)

With this control equation, the causality problem has been solved by the MIFRENs approxi-
mation of unknown nonlinear functions. In the next subsection, the system performance will
be analyzed with the designed parameters and main theorem.

3.2 Feedback system error
To guarantee the system performance, we need to design some parameters and theirs operat-
ing regions. Let the control error be defined by

e(k) = r(k)− y(k), (17)

or
e(k + 1) = r(k + 1)− y(k + 1), (18)

for time index k + 1. Substitute y(k + 1) from (11) into (18), we have

e(k + 1) = r(k + 1)− f3(p(k),y(k + 1))− f1(p(k))∆u(k). (19)

By using Taylor expression and mean value theorem, the control error in (19) can be obtained
as

e(k + 1) = r(k + 1)−
[

f3(p(k),r(k + 1)) +
∂ f3(p(k),y)

∂y

∣∣∣
y=ȳk+1

(y(k + 1)

−r(k + 1))
]
− f1(p(k))∆u(k), (20)

where ȳk+1 is between r(k+ 1) and y(k+ 1). Let us consider the system in (11) with the control
effort given by (9), we have

y(k + 1) = f3(p(k),y(k + 1)) + f1(p(k))[gu(p(k),y(k + 1))− u(k − 1)]. (21)

From (21), we can reconsider into two cases as these followings:

Case I In this case, we assume that y(k + 1) = r(k + 1) and take the derivative with respect to
y(k + 1) for the both sides of (21) thus we have

1 =
∂ f3(p(k),y(k + 1))

∂y(k + 1)
+ f1(p(k))

∂gu(p(k),y(k + 1))
∂y(k + 1)

. (22)

Case II For this second case, we reconsider (21) again with y(k + 1) �= r(k + 1), take the
derivative with respect to y(k + 1) for the both sides of (21) and use Tayler expansion
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when f1(p(k),u(k − 1)) = ∂ f (p(k),u)
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1
2
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these nonlinear functions f ∗1 (·, ·) and f ∗2 (·, ·) are unknown. In this work, two MIFRENs are
constructed to approximate f ∗1 (·, ·) and f ∗2 (·, ·) by MIFREN1 and MIFREN2, respectively. We
have

u∗(k) = u(k − 1) + [β∗T
1 F1(p(k)) + ε1(k)]r(k + 1)− β∗T

2 F2(p(k),r(k + 1))− ε2(k), (15)

where F1(·) and F2(·) are rule-functions of MIFREN1 and MIFREN2, respectively, β∗1 =

[β∗1,1 β∗1,2 · · · β∗1,n1
]T , β∗2 = [β∗2,1 β∗2,2 · · · β∗2,n2

]T are ideal weight vectors, n1 and n2
denote number of rules for each MIFREN and ε1(·) and ε2(·) are approximation errors. Let

us neglect these errors and use the actual weight vector as β1(k) and β2(k) thus the proposed
control law can be given by

u(k) = u(k − 1) + [βT
1 (k)F1(p(k))]r(k + 1)− βT

2 (k)F2(p(k),r(k + 1)). (16)

With this control equation, the causality problem has been solved by the MIFRENs approxi-
mation of unknown nonlinear functions. In the next subsection, the system performance will
be analyzed with the designed parameters and main theorem.

3.2 Feedback system error
To guarantee the system performance, we need to design some parameters and theirs operat-
ing regions. Let the control error be defined by

e(k) = r(k)− y(k), (17)

or
e(k + 1) = r(k + 1)− y(k + 1), (18)

for time index k + 1. Substitute y(k + 1) from (11) into (18), we have

e(k + 1) = r(k + 1)− f3(p(k),y(k + 1))− f1(p(k))∆u(k). (19)

By using Taylor expression and mean value theorem, the control error in (19) can be obtained
as

e(k + 1) = r(k + 1)−
[

f3(p(k),r(k + 1)) +
∂ f3(p(k),y)

∂y

∣∣∣
y=ȳk+1

(y(k + 1)

−r(k + 1))
]
− f1(p(k))∆u(k), (20)

where ȳk+1 is between r(k+ 1) and y(k+ 1). Let us consider the system in (11) with the control
effort given by (9), we have

y(k + 1) = f3(p(k),y(k + 1)) + f1(p(k))[gu(p(k),y(k + 1))− u(k − 1)]. (21)

From (21), we can reconsider into two cases as these followings:

Case I In this case, we assume that y(k + 1) = r(k + 1) and take the derivative with respect to
y(k + 1) for the both sides of (21) thus we have

1 =
∂ f3(p(k),y(k + 1))

∂y(k + 1)
+ f1(p(k))

∂gu(p(k),y(k + 1))
∂y(k + 1)

. (22)

Case II For this second case, we reconsider (21) again with y(k + 1) �= r(k + 1), take the
derivative with respect to y(k + 1) for the both sides of (21) and use Tayler expansion
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with the mean value theorem thus we have

y(k + 1) = f3(p(k),y(k + 1)) + f1(p(k))[gu(p(k),y(k + 1))− u(k − 1)],

= f3(p(k),r(k + 1)) +
∂ f3(p(k),y)

∂y

∣∣∣
y=ȳ(k+1)

[y(k + 1)− r(k + 1)]

+ f1(p(k))
[

gu(p(k),r(k + 1)) +
∂gu(p(k),y)

∂y

∣∣∣
y=y̆(k+1)

×[y(k + 1)− r(k + 1)]− u(k − 1)
]
,

= f3(p(k),r(k + 1)) + f1(p(k))[gu(p(k),r(k + 1))− u(k − 1)]

+
∂ f3(p(k),y)

∂y

∣∣∣
y=ȳ(k+1)

[y(k + 1)− r(k + 1)]

+ f1(p(k))
∂gu(p(k),y)

∂y

∣∣∣
y=y̆(k+1)

[y(k + 1)− r(k + 1)]. (23)

From (12) and u∗(k) = gu(p(k),r(k + 1)), we can rearrange (23) to be

y(k + 1)− r(k + 1) = +
∂ f3(p(k),y)

∂y

∣∣∣
y=ȳ(k+1)

[y(k + 1)− r(k + 1)]

+ f1(p(k))
∂gu(p(k),y)

∂y

∣∣∣
y=y̆(k+1)

[y(k + 1)

−r(k + 1)]. (24)

With the previous assumption, we still have ȳ(k + 1) = y̆(k + 1) and y(k + 1) �= r(k + 1)
thus (24) can be rewritten as

1 =
∂ f3(p(k),y(k + 1))

∂y(k + 1)
+ f1(p(k))

∂gu(p(k),y(k + 1))
∂y(k + 1)

. (25)

Taking the results from the both cases, the following relation can be obtained

∂ f3(p(k),y(k + 1))
∂y(k + 1)

= 1 − f1(p(k),u(k − 1))
∂gu(p(k),y(k + 1))

∂y(k + 1)
. (26)

Substitute (26) into (20), we have

e(k + 1) = r(k + 1)− f3(p(k),r(k + 1)) + e(k + 1)− f1(p(k))∆u(k)

− f1(p(k))
∂gu(p(k),y)

∂y

∣∣∣
y=ȳ(k+1)

e(k + 1), (27)

or

f1(p(k))
∂gu(p(k),y)

∂y

∣∣∣
y=ȳ(k+1)

e(k + 1) = r(k + 1)− f3(p(k),r(k + 1))

− f1(p(k))∆u(k). (28)

For the controllable system in (11), clearly, f1(p(k)) �= 0 and u∗(k) = gu(p(k),r(k + 1)) or
u(k) = gu(p(k),y(k + 1)) thus the system sensibility [

∂y
∂u ]

−1 should be obtained as

∂u(k)
∂y

∣∣∣
y=y(k+1)

=
∂gu(p(k),y)

∂y

∣∣∣
y=y(k+1)

,

=
1

γy(k)
. (29)

The next time-index error can be rewritten again as

e(k + 1) = γy(k)
[ r(k + 1)

f1(p(k))
− f3(p(k),r(k + 1))

f1(p(k))
− ∆u(k)

]
. (30)

Rearrange (30) with MIFRENs approximation given by (15), we have

e(k + 1) = γy(k)
[

β∗T
1 F1(p(k))r(k + 1)− β∗T

2 F2(p(k),r(k + 1))− ∆u(k)
]

+γy(k)
[
ε1(k)r(k + 1)− ε2(k)

]
. (31)

Substitute the proposed control law (16) into (31), we obtain

e(k + 1) = γy(k)
[

β∗T
1 F1(p(k))r(k + 1)− β∗T

2 F2(p(k),r(k + 1))

−βT
1 (k)F1(p(k))r(k + 1) + βT

2 (k)F2(p(k),r(k + 1))
]

+γy(k)
[
ε1(k)r(k + 1)− ε2(k)

]
,

= γy(k)
[

β̃T
1 (k)F1(k)r(k + 1)− β̃T

2 (k)F2(k)
]
+ γy(k)εt(k), (32)

when β̃T
i (k) = β∗T

i − βT
i (k) for i = 1,2 and εt(k) = ε1(k)r(k + 1)− ε2(k).

3.3 MIFRENs tuning laws
The parameter vectors β1(k) and β2(k) are required to update during the system operation or
on-line learning. To simplify, let us rewrite (32) to be

e(k + 1) = γy(k)
[

β̃T
1 (k) β̃T

2 (k)
]

F(k) + γy(k)εt(k), (33)

where F(k) =
[

F1(k)r(k + 1)
−F2(k)

]
. With (33), we can define the update law as the following:

[
β1(k + 1)
β2(k + 1)

]
=

[
β1(k)
β2(k)

]
+

η

ȳu||F(k)||2
F(k)D(e(k)), (34)

where η is the selected learning rate which will be discussed next and D(·) is the dead-zone
function which can be defined by

D(e(k)) =




e(k)− εm if e(k) > εm
0 if |e(k)| ≤ εm
e(k) + εm if e(k) < −εm,

(35)
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with the mean value theorem thus we have

y(k + 1) = f3(p(k),y(k + 1)) + f1(p(k))[gu(p(k),y(k + 1))− u(k − 1)],

= f3(p(k),r(k + 1)) +
∂ f3(p(k),y)

∂y

∣∣∣
y=ȳ(k+1)

[y(k + 1)− r(k + 1)]

+ f1(p(k))
[

gu(p(k),r(k + 1)) +
∂gu(p(k),y)

∂y

∣∣∣
y=y̆(k+1)

×[y(k + 1)− r(k + 1)]− u(k − 1)
]
,

= f3(p(k),r(k + 1)) + f1(p(k))[gu(p(k),r(k + 1))− u(k − 1)]

+
∂ f3(p(k),y)

∂y

∣∣∣
y=ȳ(k+1)

[y(k + 1)− r(k + 1)]

+ f1(p(k))
∂gu(p(k),y)

∂y

∣∣∣
y=y̆(k+1)

[y(k + 1)− r(k + 1)]. (23)

From (12) and u∗(k) = gu(p(k),r(k + 1)), we can rearrange (23) to be

y(k + 1)− r(k + 1) = +
∂ f3(p(k),y)

∂y

∣∣∣
y=ȳ(k+1)

[y(k + 1)− r(k + 1)]

+ f1(p(k))
∂gu(p(k),y)

∂y

∣∣∣
y=y̆(k+1)

[y(k + 1)

−r(k + 1)]. (24)

With the previous assumption, we still have ȳ(k + 1) = y̆(k + 1) and y(k + 1) �= r(k + 1)
thus (24) can be rewritten as

1 =
∂ f3(p(k),y(k + 1))

∂y(k + 1)
+ f1(p(k))

∂gu(p(k),y(k + 1))
∂y(k + 1)

. (25)

Taking the results from the both cases, the following relation can be obtained

∂ f3(p(k),y(k + 1))
∂y(k + 1)

= 1 − f1(p(k),u(k − 1))
∂gu(p(k),y(k + 1))

∂y(k + 1)
. (26)

Substitute (26) into (20), we have

e(k + 1) = r(k + 1)− f3(p(k),r(k + 1)) + e(k + 1)− f1(p(k))∆u(k)

− f1(p(k))
∂gu(p(k),y)

∂y

∣∣∣
y=ȳ(k+1)

e(k + 1), (27)

or

f1(p(k))
∂gu(p(k),y)

∂y

∣∣∣
y=ȳ(k+1)

e(k + 1) = r(k + 1)− f3(p(k),r(k + 1))

− f1(p(k))∆u(k). (28)

For the controllable system in (11), clearly, f1(p(k)) �= 0 and u∗(k) = gu(p(k),r(k + 1)) or
u(k) = gu(p(k),y(k + 1)) thus the system sensibility [

∂y
∂u ]

−1 should be obtained as

∂u(k)
∂y

∣∣∣
y=y(k+1)

=
∂gu(p(k),y)

∂y

∣∣∣
y=y(k+1)

,

=
1

γy(k)
. (29)

The next time-index error can be rewritten again as

e(k + 1) = γy(k)
[ r(k + 1)

f1(p(k))
− f3(p(k),r(k + 1))

f1(p(k))
− ∆u(k)

]
. (30)

Rearrange (30) with MIFRENs approximation given by (15), we have

e(k + 1) = γy(k)
[

β∗T
1 F1(p(k))r(k + 1)− β∗T

2 F2(p(k),r(k + 1))− ∆u(k)
]

+γy(k)
[
ε1(k)r(k + 1)− ε2(k)

]
. (31)

Substitute the proposed control law (16) into (31), we obtain

e(k + 1) = γy(k)
[

β∗T
1 F1(p(k))r(k + 1)− β∗T

2 F2(p(k),r(k + 1))

−βT
1 (k)F1(p(k))r(k + 1) + βT

2 (k)F2(p(k),r(k + 1))
]

+γy(k)
[
ε1(k)r(k + 1)− ε2(k)

]
,

= γy(k)
[

β̃T
1 (k)F1(k)r(k + 1)− β̃T

2 (k)F2(k)
]
+ γy(k)εt(k), (32)

when β̃T
i (k) = β∗T

i − βT
i (k) for i = 1,2 and εt(k) = ε1(k)r(k + 1)− ε2(k).

3.3 MIFRENs tuning laws
The parameter vectors β1(k) and β2(k) are required to update during the system operation or
on-line learning. To simplify, let us rewrite (32) to be

e(k + 1) = γy(k)
[

β̃T
1 (k) β̃T

2 (k)
]

F(k) + γy(k)εt(k), (33)

where F(k) =
[

F1(k)r(k + 1)
−F2(k)

]
. With (33), we can define the update law as the following:

[
β1(k + 1)
β2(k + 1)

]
=

[
β1(k)
β2(k)

]
+

η

ȳu||F(k)||2
F(k)D(e(k)), (34)

where η is the selected learning rate which will be discussed next and D(·) is the dead-zone
function which can be defined by

D(e(k)) =




e(k)− εm if e(k) > εm
0 if |e(k)| ≤ εm
e(k) + εm if e(k) < −εm,

(35)
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when |γy(k)εt(k)| ≤ εm as a small positive number. In the case of |e(k − 1)| > εm, with the
dead-zone function (35) and the next time-index error (33), we have

D(e(k + 1)) = αDγy(k)
[

β̃T
1 (k) β̃T

2 (k)
]

F(k), (36)

where 0 < αD ≤ 1.

3.4 System analysis
To analyze the system performance and stability, the bounded weight vectors β̃T

i (k) and the
bounded tracking error e(k) are both given in this work.
Lemma 1: For the nonlinear discrete-time system given in (1) with the control law defined in
(16), the error weight vectors β̃T

i (k) for i = 1,2 are bounded by the tuning law in (34) and the
selected learning rate η as the followings:

0 < η <
2ȳu

αDγy(k)
, (37)

when 0 < ȳu, and
2ȳu

αDγy(k)
< η < 0, (38)

when ȳu < 0.
Proof: Let us define a Lyapunov candidate function as

V
β̃
(k) = β̃T

1 (k)β̃1(k) + β̃T
2 (k)β̃2(k). (39)

The first difference can be obtained by

∆V
β̃
(k) = V

β̃
(k + 1)− V

β̃
(k),

= β̃T
1 (k + 1)β̃1(k + 1) + β̃T

2 (k + 1)β̃2(k + 1)− β̃T
1 (k)β̃1(k)

−β̃T
2 (k)β̃2(k). (40)

Let us define β̃Σ(k + 1) = β̃T
1 (k + 1)β̃1(k + 1) + β̃T

2 (k + 1)β̃2(k + 1), from the tuning law given
by (34) and β̃T

i (k) = β∗T
i − βT

i (k), we have

β̃Σ(k + 1) = β̃T
1 (k)β̃1(k) + β̃T

2 (k)β̃2(k)−
2η

ȳu||F(k)||2

[
β1(k)
β2(k)

]T
F(k)

×D(e(k + 1)) +
η2

ȳu2||F(k)||4
||F(k)||2D2(e(k + 1)). (41)

Substitute (41) into (40) and use (36), we obtain

∆V
β̃
(k) = − 2η

ȳu||F(k)||2

[
β1(k)
β2(k)

]T
F(k)D(e(k + 1)) +

η2

ȳu2||F(k)||4
||F(k)||2

×D2(e(k + 1))

= − 2η

αDγy(k)ȳu||F(k)||2
D2(e(k + 1)) +

η2

ȳu2||F(k)||2
D2(e(k + 1))

=
[ −2

αDγy(k)
+

η

ȳu

] η

ȳu||F(k)||2
D2(e(k + 1)). (42)

With the selected learning rate defined by (37) and (38) and γy(k) given in (29), the first dif-
ference of Lyapunov function is negative, thus β̃T

i (k) for i = 1,2 are bounded.

�

Remark: Normally, with out loss of generality, ȳu is assumed to be positive thus γy(k) < ȳu :
∀k. The bounded tracking error for the closed-loop system is introduced by the following
theorem.

Theorem 3.1 (Bounded tracking error). For the nonlinear discrete-time system given in (1) with
the control law defined in (16), let define a compact set Ωε = {e(k)||e(k) ≤ 4εm}, thus the ultimate
boundary on the tracking error is limk→∞ |e(k)| ≤ εm or in a compact set Ωε.

Proof: Let a Lyapunov candidate function be given by

Ve(k) =
η

2ȳu2F2
o

e2(k) + V
β̃
(k), (43)

when Fo is defined by 0 < ||F(k)|| ≤ F0,∀k. The first difference can be obtained by

∆Ve(k) = Ve(k + 1)− Ve(k),

=
η

2ȳu2F2
o
[e2(k + 1)− e2(k)] + ∆V

β̃
(k). (44)

Substitute (42) into (44), we have

∆Ve(k) =
η

2ȳu2F2
o
[e2(k + 1)− e2(k)]− 2ηD2(e(k + 1))

αDγy(k)ȳu||F(k)||2

+
η2D2(e(k + 1))

ȳu2||F(k)||2
. (45)

From the learning rate given by (37- 37), we can rearrange (45) as

∆Ve(k) <
η

2ȳu2F2
o

e2(k + 1)− η

αDγy(k)ȳu||F(k)||2
D2(e(k + 1)),

<
η

2ȳu2F2
o

e2(k + 1)− η

ȳu2F2
o
D2(e(k + 1)),

=
η

2ȳu2F2
o
[e2(k + 1)− 2D2(e(k + 1))]. (46)

In this proof, we need to provide only the case when |e(k + 1)|> εm. With |e(k + 1)|> εm, the
dead-zone function in (35) can be obtained as

D(e(k + 1)) = e(k + 1)− εmsign{e(k + 1)} . (47)

Substitute (47) into (46), we have

∆Ve(k) <
η

2ȳu2F2
o

[
e2(k + 1)− 2[e(k + 1)− εmsign{e(k + 1)}]2

]
,

=
η

2ȳu2F2
o

[
− e2(k + 1) + 4e(k + 1)εmsign{e(k + 1)} − 2ε2

m

]
,

=
η

2ȳu2F2
o

[
− e2(k + 1)− 2ε2

m + 4|e(k + 1)|εm

]
,

<
η

2ȳu2F2
o

[
− e2(k + 1) + 4|e(k + 1)|εm

]
. (48)
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when |γy(k)εt(k)| ≤ εm as a small positive number. In the case of |e(k − 1)| > εm, with the
dead-zone function (35) and the next time-index error (33), we have

D(e(k + 1)) = αDγy(k)
[

β̃T
1 (k) β̃T

2 (k)
]

F(k), (36)

where 0 < αD ≤ 1.

3.4 System analysis
To analyze the system performance and stability, the bounded weight vectors β̃T

i (k) and the
bounded tracking error e(k) are both given in this work.
Lemma 1: For the nonlinear discrete-time system given in (1) with the control law defined in
(16), the error weight vectors β̃T

i (k) for i = 1,2 are bounded by the tuning law in (34) and the
selected learning rate η as the followings:

0 < η <
2ȳu

αDγy(k)
, (37)

when 0 < ȳu, and
2ȳu

αDγy(k)
< η < 0, (38)

when ȳu < 0.
Proof: Let us define a Lyapunov candidate function as

V
β̃
(k) = β̃T

1 (k)β̃1(k) + β̃T
2 (k)β̃2(k). (39)

The first difference can be obtained by

∆V
β̃
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β̃
(k + 1)− V
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(k),
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2 (k + 1)β̃2(k + 1)− β̃T
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−β̃T
2 (k)β̃2(k). (40)

Let us define β̃Σ(k + 1) = β̃T
1 (k + 1)β̃1(k + 1) + β̃T

2 (k + 1)β̃2(k + 1), from the tuning law given
by (34) and β̃T
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i (k), we have
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1 (k)β̃1(k) + β̃T

2 (k)β̃2(k)−
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β1(k)
β2(k)

]T
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Substitute (41) into (40) and use (36), we obtain

∆V
β̃
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[
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β2(k)

]T
F(k)D(e(k + 1)) +

η2
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= − 2η

αDγy(k)ȳu||F(k)||2
D2(e(k + 1)) +

η2

ȳu2||F(k)||2
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=
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αDγy(k)
+

η
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] η
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D2(e(k + 1)). (42)

With the selected learning rate defined by (37) and (38) and γy(k) given in (29), the first dif-
ference of Lyapunov function is negative, thus β̃T

i (k) for i = 1,2 are bounded.

�

Remark: Normally, with out loss of generality, ȳu is assumed to be positive thus γy(k) < ȳu :
∀k. The bounded tracking error for the closed-loop system is introduced by the following
theorem.

Theorem 3.1 (Bounded tracking error). For the nonlinear discrete-time system given in (1) with
the control law defined in (16), let define a compact set Ωε = {e(k)||e(k) ≤ 4εm}, thus the ultimate
boundary on the tracking error is limk→∞ |e(k)| ≤ εm or in a compact set Ωε.

Proof: Let a Lyapunov candidate function be given by

Ve(k) =
η

2ȳu2F2
o

e2(k) + V
β̃
(k), (43)

when Fo is defined by 0 < ||F(k)|| ≤ F0,∀k. The first difference can be obtained by

∆Ve(k) = Ve(k + 1)− Ve(k),

=
η

2ȳu2F2
o
[e2(k + 1)− e2(k)] + ∆V

β̃
(k). (44)

Substitute (42) into (44), we have

∆Ve(k) =
η

2ȳu2F2
o
[e2(k + 1)− e2(k)]− 2ηD2(e(k + 1))

αDγy(k)ȳu||F(k)||2

+
η2D2(e(k + 1))

ȳu2||F(k)||2
. (45)

From the learning rate given by (37- 37), we can rearrange (45) as

∆Ve(k) <
η

2ȳu2F2
o

e2(k + 1)− η

αDγy(k)ȳu||F(k)||2
D2(e(k + 1)),

<
η

2ȳu2F2
o

e2(k + 1)− η

ȳu2F2
o
D2(e(k + 1)),

=
η

2ȳu2F2
o
[e2(k + 1)− 2D2(e(k + 1))]. (46)

In this proof, we need to provide only the case when |e(k + 1)|> εm. With |e(k + 1)|> εm, the
dead-zone function in (35) can be obtained as

D(e(k + 1)) = e(k + 1)− εmsign{e(k + 1)} . (47)

Substitute (47) into (46), we have

∆Ve(k) <
η

2ȳu2F2
o

[
e2(k + 1)− 2[e(k + 1)− εmsign{e(k + 1)}]2

]
,

=
η

2ȳu2F2
o

[
− e2(k + 1) + 4e(k + 1)εmsign{e(k + 1)} − 2ε2

m

]
,

=
η

2ȳu2F2
o

[
− e2(k + 1)− 2ε2

m + 4|e(k + 1)|εm

]
,

<
η

2ȳu2F2
o

[
− e2(k + 1) + 4|e(k + 1)|εm

]
. (48)
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Consider the result in (48), clearly, ∆Ve(k) is always negative where |e(k + 1)| > 4εm, thus
∆Ve(k) < 0 when |e(k + 1)| is out side a compact set Ωε.

�

4. Computer simulation example

The proposed control algorithm and theorem are verified by the computer simulation. The
selected controllable system is described by

y(k + 1) = sin(y(k)) + cos(y(k)u(k))u(k) + 5u(k). (49)

The system performance can be demonstrated into two cases as the nominal system and the
robust control.

4.1 Nominal system
With the system displayed in (49), the system parameters can be selected as εm = 0.001, η = 0.8
and ȳu = 5. All IF-THEN rules for both MIFRENs are given by the followings:

MIFREN1

Rule 1 If y(k) is N and u(k − 1) is N Then f1,1(k) = β1,1(k)F1,1(k),
Rule 2 If y(k) is N and u(k − 1) is Z Then f1,2(k) = β1,2(k)F1,2(k),
Rule 3 If y(k) is N and u(k − 1) is P Then f1,3(k) = β1,3(k)F1,3(k),
Rule 4 If y(k) is Z and u(k − 1) is N Then f1,4(k) = β1,4(k)F1,4(k),
Rule 5 If y(k) is Z and u(k − 1) is Z Then f1,5(k) = β1,5(k)F1,5(k),
Rule 6 If y(k) is Z and u(k − 1) is P Then f1,6(k) = β1,6(k)F1,6(k),
Rule 7 If y(k) is P and u(k − 1) is N Then f1,7(k) = β1,7(k)F1,7(k),
Rule 8 If y(k) is P and u(k − 1) is Z Then f1,8(k) = β1,8(k)F1,8(k),
Rule 9 If y(k) is P and u(k − 1) is P Then f1,9(k) = β1,9(k)F1,9(k),

MIFREN2

Rule 1 If y(k) is N and r(k + 1) is N Then f2,1(k) = β2,1(k)F2,1(k),
Rule 2 If y(k) is N and r(k + 1) is Z Then f2,2(k) = β2,2(k)F2,2(k),
Rule 3 If y(k) is N and r(k + 1) is P Then f2,3(k) = β2,3(k)F2,3(k),
Rule 4 If y(k) is Z and r(k + 1) is N Then f2,4(k) = β2,4(k)F2,4(k),
Rule 5 If y(k) is Z and r(k + 1) is Z Then f2,5(k) = β2,5(k)F2,5(k),
Rule 6 If y(k) is Z and r(k + 1) is P Then f2,6(k) = β2,6(k)F2,6(k),
Rule 7 If y(k) is P and r(k + 1) is N Then f2,7(k) = β2,7(k)F2,7(k),
Rule 8 If y(k) is P and r(k + 1) is Z Then f2,8(k) = β2,8(k)F2,8(k),
Rule 9 If y(k) is P and r(k + 1) is P Then f2,9(k) = β2,9(k)F2,9(k),

when N, Z and P denote negative, zero and positive linguistic levels respectively. The mem-
bership functions for these rules are illustrated in Fig. (2) and (3). In this work, we use the
same membership functions of y(k) and r(k + 1) because these variables have equality lin-
guistic levels in the sense of human.

Fig. 2. Membership functions of u(k − 1)

Fig. 3. Membership functions of r(k + 1) and y(k)

The initial setting βi,j(1) for i = 1,2 and j = 1,2, · · · ,9 can be given as

βi,1(1)=-1 βi,2(1)=-0.75 βi,3(1)=-0.5,
βi,4(1)=-0.25 βi,5(1)=0 βi,6(1)=0.25,
βi,7(1)=0.5 βi,8(1)=0.75 βi,9(1)=1.

In Fig. 4, the tracking performance is quite satisfied with out the off-line learning. The control
effort is illustrated in Fig. 5. The convergence of βi(k) is shown by ||βi(k)|| in Fig. 6 for both
MIFRENs.



On-line learning of fuzzy rule emulated networks for a class of unknown nonlinear discrete-time 
controllers with estimated linearization 261

Consider the result in (48), clearly, ∆Ve(k) is always negative where |e(k + 1)| > 4εm, thus
∆Ve(k) < 0 when |e(k + 1)| is out side a compact set Ωε.

�

4. Computer simulation example

The proposed control algorithm and theorem are verified by the computer simulation. The
selected controllable system is described by

y(k + 1) = sin(y(k)) + cos(y(k)u(k))u(k) + 5u(k). (49)

The system performance can be demonstrated into two cases as the nominal system and the
robust control.

4.1 Nominal system
With the system displayed in (49), the system parameters can be selected as εm = 0.001, η = 0.8
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Fig. 4. Tracking performance y(k) for nominal plant.

Fig. 5. Control effort u(k) for nominal plant.

Fig. 6. ||βi(k)|| for nominal plant.

4.2 Robust control
In the robust system case, the uncertainty terms ∆ f1(k) and ∆ f2(k) are included in the system
(49) as

y(k + 1) = sin(y(k)) + ∆ f1(k) + cos(y(k)u(k))u(k) + 5u(k) + ∆ f2(k)u(k), (50)

when

∆ f1(k) =




1 if 0 < k < 125
0.75 if 125 ≤ k < 325
−1.25 if 325 ≤ k < 425
1.25 if 425 ≤ k < 500,

(51)

and

∆ f2(k) =




−0.5 if 0 < k < 125
1 if 125 ≤ k < 225
−0.75 if 225 ≤ k < 425
−0.5 if 425 ≤ k < 500.

(52)

We use the initial setting IF-THEN rules, membership functions, εm, η, ȳu and parameter
vectors βi, as the same as the previous one. With out any off-line learning for MIFRENs, the
tracking performance is represented in Fig. 8. The control effort u(k) is shown in Fig. 9. The
time variation of ||βi(k)|| can be illustrated in Fig. 10. These uncertainty terms ∆ f1(k) and
∆ f2(k) are varied with time but the tuning vectors are all bounded.
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Fig. 7. Illustration of uncertainty ∆ f1(k) and ∆ f2(k).

Fig. 8. Tracking performance y(k) for robust system.

Fig. 9. Control effort u(k) for robust system.

Fig. 10. ||βi(k)|| for robust system.



On-line learning of fuzzy rule emulated networks for a class of unknown nonlinear discrete-time 
controllers with estimated linearization 265

Fig. 7. Illustration of uncertainty ∆ f1(k) and ∆ f2(k).

Fig. 8. Tracking performance y(k) for robust system.
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5. Experimental setup example

In this section, the performance of our proposed controller is demonstrated by an experimen-
tal setup with FESTO mobile robot system called Robotino R© . Our task is to design the con-
troller for moving this Robotino R© to reach the desired position in (x,y) coordinate as xd(i,k)
and yd(i,k), respectively. During the movement, the desired angular of Robotino R© denoted as
φd(i,k) should be maintained as 0◦ for all ith desired position and time index k. The system
configuration can be illustrated in Fig. 12 by the block diagram.

Fig. 11. Robotino.

Fig. 12. Block diagram for experimental setup.

The commercial Robotino R© needs velocity to control its movement such as velocity in x−axis
vx(i,k) for x−direction, vy(i,k) for y−direction and vφ(i,k) for the rotation. In this work, we
consider these signals as the control efforts which can be generated by the pair of MIFRENs.
The experiment has been demonstrated by 4 desired points and 4 routes as the following:
route 1 [(0.0, 0.5)→(0.5, 0)], route 2 [(0.5, 0)→(0.0, 0.0)], route 3 [(0.0, 0.0)→(0.5, 0.5)] and
route 4 [(0.5, 0.5)→(0.0, 0.5)]. In Fig. 13, the movement of Robotino R© is illustrated in x − y
coordinate with errors in x and y axis as ex and ey shown in Fig. 14. Because of the fixed
angular φd = 0, we need to consider only two control efforts vx and vy as presented in Fig.
15. At the beginning, on route 1 and 2, the movement of robot is not strange line because
MIFRENs need to tune the parameters inside. After that the better results can be obtained in
route 3 and 4. In case of losing the wireless signal, we still have the satisfied result as shown
in Fig. 16.

Fig. 13. Experimental result: position x − y.
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Fig. 14. Experimental result: position errors ex and ey.

Fig. 15. Experimental result: velocity vx and vy.

Fig. 16. Experimental result: position x − y (in case of loss signal transmission).

6. Conclusion

In this chapter, an adaptive control for a class of nonlinear discrete-time systems based on
multi-input fuzzy rules emulated networks (MIFREN) is introduced by the approximation
with Taylor and mean value theorem. With out the need of mathematical system model, the
approximation can be existed directly to construct the control law. Two MIFRENs are imple-
mented to estimate these unknown functions obtained by the nonaffine linearization. With
the main theorem, the learning algorithm for parameters inside MIFRENs guarantees the con-
vergence of these parameters and the satisfied tracking performance. The computer simula-
tion system demonstrates the accuracy of our mathematic proof. We already consider both
operating cases for the nominal plant and the plant with some uncertainties. The bounded
parameters ||β1|| and ||β2|| and the satisfied tracking performance can be presented for the
both cases with the same initial setting. The experimental setup the commercial mobile robot
system called Robotino R© is given to demonstrate the controller performance.
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Abstract    
 

Due to the enormous amount of research publications are available, perceiving the growth 
of scientific knowledge even in one’s own specialise field is a challenge task. It would be 
helpful if we could provide scientists with knowledge visualisation tools to discover the 
existence of a scientific paradigm and movements of such paradigms. This chapter 
introduces the state of the art of visualising knowledge structures. The aim of visualising 
knowledge structures is to capture intellectual structures of a particular knowledge domain. 
Approaches to the visualisation of knowledge structures with emphasis on the role of 
citation-based methods are described. The principal components of factor analysis and 
Pathfinder network are utilized to reveal new and signification developments of intellectual 
structure in ubiquitous computing research area. Literature published in the online citation 
data bases CiteSeer and Web of Science (WoS) are exploited to drive the main research 
themes and their inter-relationships in ubiquitous computing. The benefit of the results 
obtained could be for someone new to a specific domain in research study, ubiquitous 
computing in this case. The outcome uncovers popular topics and important research in the 
particular domain. Potential developments can be re-used and utilized in other disciplines 
and share across different research domains. 

 
1. Introduction    
 

Computing technology is a paradigm shift where technology becomes virtually invisible in 
our lives and is a rapidly advancing and expanding research and development field in this 
decade. Due to the enormous amount of available scientific research publications, keeping 
up the growth of scientific knowledge even in one’s own specialise field is a challenge task. 
It would be helpful if we could provide scientists with knowledge visualisation tools to 
detect the existence of a scientific paradigm and movements of such paradigms. The main 
scientific research themes are also very difficult to analyze and grasp by using the 
traditional methodologies. For example, visualising intrinsic structures among documents in 
scientific literatures could only capture some aspects of scientific knowledge.  
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This chapter introduces the state of the art of visualising knowledge structures. The aim of 
visualising knowledge structures is to capture and reveal insightful patterns of intellectual 
structures shared by scientists in a subject field. This chapter describes approaches to the 
visualisation of knowledge structure with emphasis on the role of citation-based methods. 
Instead of depending upon occurrence patterns of content-bearing words, we aim to capture 
the intellectual structures of a particular knowledge domain. 
We focus on the study of ubiquitous computing, also called pervasive computing. 
Numerous journals and conferences are now dedicated to the study of ubiquitous 
computing and related topics. Ubiquitous computing was first described by Weiser (1991). 
Since then, a rich amount of related literatures are published. It would be useful if the 
content of those publications could be summarised and presented in an easy way to capture 
structures and facilitate the understanding of the research themes and trend in ubiquitous 
computing.  
The goal of the chapter is to show the scope and main themes of ubiquitous computing 
research. We begin by examining the survey studies of visualising knowledge structures. 
Next, the data collection method and intellectual structure techniques, factor analysis and 
Pathfinder Network, are introduced. The results of the analysis are presented and discussed. 

 
2. Visualising Knowledge Structures 
 

Information visualisation techniques have become a rapid growth research area since the 
last decade (Card et al 1999; Chen 1999). In information retrieval, the vector-space model 
(Salton 1991) is an originally and popularly exploited framework for indexing documents 
based on term frequencies. A focal part of modern statistical probability modelling is 
Bayesian theorem (Neal 1996), which focuses on the probabilistic relationship between 
multiple variables and determining the impact of one variable on another. Shannon’s 
information theory (Shannon 1948) describes information could be treated as a quantifiable 
value in communications. Self-organised feature maps are essentially classification processes 
through a neural network. (Lin, Soergel and Marchionini 1991) is the first to use self-
organised maps to visual information retrieval. WEBSOM organizes textual documents for 
exploration and search based on self-organised map (Lagus et al 1996). 
Visualising knowledge structure is an art of making maps, which shares some intrinsic 
characteristics with cartography (Chen 2002). Number of useful knowledge visualisation 
techniques has been applied to detect and extract significant elements from unstructured 
text. The basis for the visualisation of knowledge structures is formed by the 
interrelationships between these elements. Citation indexing has been widely applied since 
1950s. One of the fundamental objectives of science mapping is to identify the trend 
associated with a field of study. The map created through citation analysis provides a series 
of historical data, which cover the literature year by year (Garfield 1975). These maps show 
intrinsic semantic connections among disciplines of domains. The author co-citation analysis 
(ACA) was introduced to discover how scientists in a particular subject field are 
intellectually interrelated as perceived by authors in their scientific publications (White and 
Griffith 1981). An intellectual structure of prominent authors in the field provides a 
respectable source for knowledge visualisation.  
 

 

Knowledge Domain Visualisation (KDV) depicts the structure and evolution of scientific 
fields (Borner, Chen and Boyak 2002). Some recent works in knowledge discovery and data 
mining systems compose analysis of engineering domain (Mothe and Dousset 2004; Mothe 
et al 2006). 

 
2.1 Factor Analysis 
Factor analysis is one of the commonly used methods in author co-citation analysis. It has 
been used to identify the intrinsic dimensionality of given co-citation data in a subject 
domain. (White and McCain 1995) demonstrates the author co-citation analysis of the 
information science field that some authors indeed belong to several specialties 
simultaneously. However, if datasets is big, then the size of the corresponding author co-
citation matrix could be large and the analysis becomes computationally complicate and 
expensive.  
White and McCain introduces the raw co-citation should be transformed into Pearson’s 
correlation coefficients using the factor analysis (White and McCain 1995). The correlation 
coefficients measure the nearness between authors’ co-citation profiles. Principal component 
analysis (PCA) is a suggested alternative to extract factors. The default criterion, Eigen 
values greater than 1, is normally chosen to decide the number of factors extracted. Missing 
data should also be replaced by mean co-citation counts for corresponding authors. 
Pearson’s correlation coefficient can be used as a measure of similarity between pairs of 
authors. 

 
2.2 Pathfinder Network Scaling 
Pathfinder network scaling is originally developed by cognitive psychologists for 
structuring modelling (Schcaneveldt, Durso and Dearholt 1989). Pathfinder network scaling 
relies on the triangle inequality condition to select the most salient relations from proximity 
data. The Pathfinder network (PFNET), the results of Pathfinder network scaling, consists of 
all the vertices from the original graph. The number of edges in a Pathfinder network is 
driven by the basic structure of semantics. The topology of a PFNET is decided by two 
parameters q and r. The corresponding network is denoted as PFNET (q, r). The q-parameter 
controls the scope that the triangular inequality condition should be set. The r-parameter is 
used to computing the distance of a path. The weight of a path with k links is determined by 
weights w1, w2, …, wk of each individual link as follows. 
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3. Intellectual Structure of Ubiquitous Computing 
 

Numerous amounts of scientific papers publish every year and the accumulated literatures 
over the years are voluminous. We utilized the methods that have been developed in 
visualizing information structure to comprehend the entire body of scientific knowledge. 
The aim is to discover the development in ubiquitous computing.  
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3. Intellectual Structure of Ubiquitous Computing 
 

Numerous amounts of scientific papers publish every year and the accumulated literatures 
over the years are voluminous. We utilized the methods that have been developed in 
visualizing information structure to comprehend the entire body of scientific knowledge. 
The aim is to discover the development in ubiquitous computing.  
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3.1 Proposed Process 
Figure 1 shows a proposed process to construct a full citation graph from the data drawn 
from online citation databases, WOS and CiteSeer. The proposed procedure leverages the 
citation index by using key phrases “ubiquitous computing” to query the index and retrieve 
all matching documents from the database. The documents retrieved by the query are then 
used as the initial seed set to retrieve papers that are citing or cited by literatures in the 
initial seed set (Lee and Chen 2007; Chen and Lee 2006; Pozi 2002). The co-citation matrix is 
derived from the co-citation relationships between papers. A co-citation relationship existed 
between two papers when a third paper cites them both, i.e., both papers are listed in the 
reference portion of the third paper. The full citation graph is built by linking all articles 
retrieved, which includes more documents than the other schemes reviewed earlier. 
 
 
 
 
 
 
 
 
  
 

 
Fig. 1. The Proposed Process 
 
The main usage of the factor analysis is to reduce the number of variables and to detect 
structure in the relationships between variables. Factor analysis combines correlated 
variables (papers) into one component (research theme). The co-citation matrix is the input 
of factor analysis. The co-citation graph is represented by a matrix to compute the 
correlation matrix of Pearson’s correlation coefficients. The Pearson correlation matrix, which is 
resulted from the factor analysis, is the input of the Pathfinder network scaling. All nodes in a graph 
are connected by weighted links. The weights are represented by the value of correlation 
coefficients for each pair of documents. 
The citation data are driven from two online citation databases, Citeseer and IS Web of 
Science (WoS). CiteSeer is an open access free database, which is a scientific literature digital 
library. Citseer’s search engine focuses primarily on the literature in computer and 
information science. ISI Web of Knowledge database is created by Thomson Reuters in 1997 
and integrated access to high quality, multidisciplinary research literature. Web of Science 
(WoS) is part of ISI Web of Knowledge. WoS covers SCI, SSCI and A&HCI citation 
databases.  
Citation data are collected by querying both databases with the key phrases〝ubiquitous 
computing“ and retrieving the initial key papers’ information. The key papers are then used 
as the initial seed set to retrieve papers that are citing or are cited by literatures in the initial 
seed set (Chen and Xie 2005). A full citation graph is generated by linking all articles 
retrieved. The depth of the expanded search is restricted to three layers to maintain the most 
relevant literatures.  
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3.2 Main Components derived from Factor Analysis 
Factor analysis is applied as a data reduction and structure detection method. The co-
citation matrixes generated from CiteSeet and WoS are derived from the citation graphs and 
fed to factor analysis. The unit of analysis is based on documents rather than author due to a 
researcher’s specialty may evolve over time (Chen and Lee 2006; Lee and Chen 2008). 
49 components with Eigenvalue over one were identified from the CiteSeer citation data. 
These factors collectively explained approximately 84.2% total variances. Papers with a 
loading over 0.6 to a component are collected and studies to determine the content of the 
component. A proper descriptive name for each component is decided, which represent the 
research trends in the ubiquitous computing field. Based on CiteSeer citation data, top 10 
components and the variances of the components explained are listed in Table 1. 
Component 9 does not include any papers with loading larger than 0.6 and therefore, is not 
listed in the table. The content of these nine factors are described in the context of ubiquitous 
computing. 

 
Factor Component 

Name 
Variance 

Explained 
Description 

1 Routing 
protocols for 
mobile and ad 
hoc networks 

7.206 An ad hoc network is a collection of wireless 
mobile nodes dynamically forming a 
temporary network without the use of any 
existing network infrastructure or centralized 
administration. 

2 Location and 
data 
management in 
mobile wireless 
environment 

6.733 Location and data management in a mobile 
wireless environment is different from the 
transitional fixed wire environment. Location 
and data management is required when all 
the communications over a mobile wireless 
environment with a sufficient and steady 
bandwidth. 

3 Location and 
context aware 
computing 

5.702 Location and context aware computing will 
free the user from the traditional constraints 
of the desktop. Context refers to the physical 
and social situation in which computational 
devices are embedded. Contextual 
information can be used to provide services 
that are appropriate to the situational events. 

4 Broadcast based 
data 
management for 
asymmetric 
communication 
environments 

5.023 Broadcasted data has been proposed as a 
means to efficiently deliver data to clients in 
asymmetric environments, where the 
available bandwidth from the server to the 
clients exceeds the bandwidth in the opposite 
direction. In the presence of such asymmetry, 
applications must rely on the broadcast data 
channel to receive the up-to-date information. 

5 Integrating with 
computer 

4.310 Interacting with computer augmented 
artifacts and environments may greatly 
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3.2 Main Components derived from Factor Analysis 
Factor analysis is applied as a data reduction and structure detection method. The co-
citation matrixes generated from CiteSeet and WoS are derived from the citation graphs and 
fed to factor analysis. The unit of analysis is based on documents rather than author due to a 
researcher’s specialty may evolve over time (Chen and Lee 2006; Lee and Chen 2008). 
49 components with Eigenvalue over one were identified from the CiteSeer citation data. 
These factors collectively explained approximately 84.2% total variances. Papers with a 
loading over 0.6 to a component are collected and studies to determine the content of the 
component. A proper descriptive name for each component is decided, which represent the 
research trends in the ubiquitous computing field. Based on CiteSeer citation data, top 10 
components and the variances of the components explained are listed in Table 1. 
Component 9 does not include any papers with loading larger than 0.6 and therefore, is not 
listed in the table. The content of these nine factors are described in the context of ubiquitous 
computing. 

 
Factor Component 

Name 
Variance 

Explained 
Description 

1 Routing 
protocols for 
mobile and ad 
hoc networks 

7.206 An ad hoc network is a collection of wireless 
mobile nodes dynamically forming a 
temporary network without the use of any 
existing network infrastructure or centralized 
administration. 

2 Location and 
data 
management in 
mobile wireless 
environment 

6.733 Location and data management in a mobile 
wireless environment is different from the 
transitional fixed wire environment. Location 
and data management is required when all 
the communications over a mobile wireless 
environment with a sufficient and steady 
bandwidth. 

3 Location and 
context aware 
computing 

5.702 Location and context aware computing will 
free the user from the traditional constraints 
of the desktop. Context refers to the physical 
and social situation in which computational 
devices are embedded. Contextual 
information can be used to provide services 
that are appropriate to the situational events. 

4 Broadcast based 
data 
management for 
asymmetric 
communication 
environments 

5.023 Broadcasted data has been proposed as a 
means to efficiently deliver data to clients in 
asymmetric environments, where the 
available bandwidth from the server to the 
clients exceeds the bandwidth in the opposite 
direction. In the presence of such asymmetry, 
applications must rely on the broadcast data 
channel to receive the up-to-date information. 

5 Integrating with 
computer 

4.310 Interacting with computer augmented 
artifacts and environments may greatly 
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augmented 
artifacts and 
environment 

enhance a user’s experience. Computer 
augmented physical objectives or devices may 
facilitate more effectively computational 
mediation. 

6 Transmission 
control protocol 
(TCP) over 
mobile 
internetworks 

4.120 The study of TCP over mobile internetworks 
addresses the performance issue of reliable 
data communication in mobile computing 
environments. Two changed assumptions 
need to be addressed in the mobile 
computing: (1) the end points of the 
communication link are fixed and (2) the 
underlying network has high and reliable 
bandwidth with low latency. 

7 Application 
design for mobile 
computing 

3.524 This factor addresses the disparity of mobile 
devices in resources, network characteristics, 
display size, and method of input from 
application level. Application design 
strategies may reduce the demands placed on 
the wireless network. 

8 Disconnected 
operations 

3.023 Disconnected operation is a mode of 
operation that enables a client to continue 
accessing critical data during temporary 
failures of a shared data repository. The 
temporary failures may due to networks or 
data sources breakdown. The core idea 
behind this work is utilizing tradition 
performance improving data, such as caching 
data, to improve availability. 

10 Data access in a 
scalable 
distributed 
environment (e.g. 
a P2P network) 

2.618 Data access in a scalable distributed 
environment (e.g. a P2P network) is 
analogous to the data access of an ad hoc 
mobile network. The lookup mechanism used 
to locate a desire file is analogous to the ad 
hoc routing operation that locates nearby 
mobile nodes to forward data jackets. 

Table 1. Top 10 Factors of ubiquitous computing drew from CiteSeer 
 
From the WoS dataset, 30 components with Eigenvalue over one collectively explained 
approximately 86.4% total variances. These components are selected as the representative 
major themes of ubiquitous computing. Papers with a loading over 0.5 to a component are 
collected and studied to determine the content of the component. Based on WOS citation 
data, top 10 components with descriptions and the variances of the components explained 
are listed in Table 2. 
 
 
 

 

Factor Component 
Description 

Variance 
Explained 

Description 

1 Foundational 
studies of 
ubiquitous 
computing 

17.123 Foundational studies of ubiquitous 
computing provide a generic platform for 
location and spatial-aware systems. The 
platform supports a unified spatial-aware 
infrastructure based on digital models of the 
physical world. A universal spatial and 
context-aware infrastructure is essential to 
overcome the sheer diversity of exploitable 
contexts and the myriad of sensing 
technologies. 

2 Power aware 
routing protocol 
for wireless 
sensor network 

8.329 The availability of small, lightweight low-cost 
network is crucial to the success of ubiquitous 
computing. The lightweight network uses 
energy sparingly to prolong the operational 
span of the ubiquitous network. The power 
saving algorithms and protocols are the focus 
of much ubiquitous computing related 
research.  

3 Medical 
informatics, 
application of 
ubiquitous 
computing in 
health care 

6.917 The ubiquitous availability of clinical 
information is major trend in medical 
informatics research. The application of new 
information and communication technologies 
will offer new opportunities and increase the 
potential of medical informatics methods and 
tools. The mobility of hospital environment, 
such as staff, patients, documents and 
equipments, makes hospitals’ ideal 
applications for pervasive or ubiquitous 
computing technology.  

4 Context-aware 
workflow 
language based 
on Web services 

5.105 Research in this factor seems to explore the 
common feature of Web services and 
ubiquitous computing. According to W3C, the 
web services are defined as “a software 
system designed to support an interoperable 
machine to machine interaction over a 
network”. The standardization of 
ubiquitously available services and 
interoperability between services (factor 1) 
becomes the natural bond between web 
services and ubiquitous computing. 

5 Context-aware 
computing 

4.878 Papers in factor 5 try to clarify and define the 
scope and content of context aware 
computing. Context awareness is the key to 
dispersing and enmeshing ubiquitous 
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data, top 10 components with descriptions and the variances of the components explained 
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studies of 
ubiquitous 
computing 

17.123 Foundational studies of ubiquitous 
computing provide a generic platform for 
location and spatial-aware systems. The 
platform supports a unified spatial-aware 
infrastructure based on digital models of the 
physical world. A universal spatial and 
context-aware infrastructure is essential to 
overcome the sheer diversity of exploitable 
contexts and the myriad of sensing 
technologies. 

2 Power aware 
routing protocol 
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8.329 The availability of small, lightweight low-cost 
network is crucial to the success of ubiquitous 
computing. The lightweight network uses 
energy sparingly to prolong the operational 
span of the ubiquitous network. The power 
saving algorithms and protocols are the focus 
of much ubiquitous computing related 
research.  

3 Medical 
informatics, 
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health care 
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information is major trend in medical 
informatics research. The application of new 
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will offer new opportunities and increase the 
potential of medical informatics methods and 
tools. The mobility of hospital environment, 
such as staff, patients, documents and 
equipments, makes hospitals’ ideal 
applications for pervasive or ubiquitous 
computing technology.  

4 Context-aware 
workflow 
language based 
on Web services 

5.105 Research in this factor seems to explore the 
common feature of Web services and 
ubiquitous computing. According to W3C, the 
web services are defined as “a software 
system designed to support an interoperable 
machine to machine interaction over a 
network”. The standardization of 
ubiquitously available services and 
interoperability between services (factor 1) 
becomes the natural bond between web 
services and ubiquitous computing. 

5 Context-aware 
computing 

4.878 Papers in factor 5 try to clarify and define the 
scope and content of context aware 
computing. Context awareness is the key to 
dispersing and enmeshing ubiquitous 
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computation in our lives. Contextual 
information is acquired and utilized by 
devices to provide services that are 
appropriate to the situational events. 

6 Ambient 
intelligent 
systems 

4.854 Papers in factor 6 extended the context-aware 
computing to ambient intelligent systems. 
How “context” can be effectively utilized by a 
context-aware system, which in turn exhibit 
ambient intelligent is the focal issue of 
research in this factor. 

7 Open services 
gateway 
initiative (OSGi) 

4.766 OSGi is technology standard that can 
coordinate diverse device technologies and 
enable compound services across different 
networking technologies. OSGi can be viewed 
as an initial effort of commercial realisation of 
the universal spatial and context-aware 
infrastructure envisioned by the academy. 

8 Ubiquitous 
applications in 
education 

4.350 Articles in factor 8 explore how learning could 
be augmented by ubiquitous computing 
devices in an educational setting. The 
functionalities of traditional classroom 
equipment and instruments such as 
whiteboard, notebook PC, PDAs and other 
learning aids could be augmented by 
embedding ubiquitous computing power to 
enhance the learning environment and 
enriching the learning experiences. 

9 Information 
technology as the 
competitive 
advantages of 
business 

3.573 Papers in factor 9 deal with IT and sustained 
business competitive advantage. IT has been 
recognized as one of the key competitive 
advantage for modern businesses. How an 
organisation builds up its IT capability, 
streamline its business process, and reconciles 
its organisational structure are important 
issues.  

10 Tangible and 
graspable user 
interfaces 

2.903 Factor 10 includes papers on the study of 
tangible and graspable user interfaces. A 
tangible user interface lets users using 
graspable physical objects to emulate the 
functions of traditional icon-based computer 
graphical user interfaces. Instead of clicking or 
dragging a mouse, the tangible user interface 
tries to carry out the human computer 
interaction through manipulation of physical 
objects. 
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3.3 Pathfinder Network  
The Pearson’s correlation coefficients between items (papers) are calculated and used as the 
basis for PFNET scaling. The value of Pearson correlation coefficient falls between the range 
-1 and 1. Highly correlated items are placed closely together spatially. The nodes located 
close to the centre of a PFNET graph represents papers contributed to a fundamental 
concept, which are frequently referred by other peripheral literature that are positioned in 
outer branches. The distance between items is inversely propositional to the correlation 
coefficient, which maps less correlated items apart and highly correlated items spatially 
adjacent.  

 
Fig. 2. PFNET Scaling of ubiquitous computing drew from CiteSeer. 
 
Figure 2 represent PFNET scaling of ubiquitous computing from CiteSeer. Articles under the 
same factor are painted with the same colour. The number in the parenthesis is the factor 
number which an article belongs to. Cyan nodes with (0) represent articles that are not 
assigned to any factor. The top ranked components cluster numbered 6, 7, and 12 locate 
closely to the centre of the PFNET graph (surrounded by a big circle in the centre of the 
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but important theme in the research field. Component 4 (top left circle, node colour in blue), 
although ranked high in the amount of variance explained, plays peripheral roles in 
ubiquitous computing related research. A high-ranked peripheral component is generally an 
important study, but plays only a supplement role in ubiquitous computing study. 
Component 3 (lower right circle, node colour in red) plays an interesting role, which 
indicates that location and context aware computing related researches are important to 
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interesting role, which indicates that medical informatics research is important to ubiquitous 
computing as well as an important topic in general. 

 
Fig. 3. PFNET Scaling of ubiquitous computing drew from Web of Science (WoS). 

 
4. Discussion 
 

Abowd and Munatt (Abowd and Munatt 2000) investigate the main research focuses in 
ubiquitous computing publications in 2000, which include natural interface, context-aware 
applications and automated capture and access. However, they mainly based on the 
bounded expertise of the author(s) and a rather limited set of references. We propose a 
visualising knowledge structure method in analyzing large collections of literatures, which 
reveals the major research themes and their inter-relationships in ubiquitous computing. We 
utilize the intellectual structure construction and knowledge domain visualisation 
techniques developed by the information scientists to ease the task of understanding the 
main research themes in ubiquitous computing.  
Based on the citation papers derived from factor analysis and PFNET in ISI Web of Science 
(WoS) in 2008, foundational ubiquitous computing studies, context-aware computing, and 
ambient intelligent systems provide fundamental and important knowledge base to 
ubiquitous computing studies. Power aware routing protocol and context-aware workflow 
language are relevant and important studies in general, but only play a supporting or 
supplemental role in ubiquitous computing research. 
In contrast, based on the citation data drew from CiteSeer in 2008, the study of application 
design for mobile computing, TCP over mobile internetworks and network support for real-
time applications provide a fundamental and important technical knowledge base to 
ubiquitous computing studies. Broadcast based data management for asymmetric 
communication environments and interacting with computer augmented artefacts and 
environment are relevant and important studies in general, but only play a supporting or 
supplemental role in ubiquitous computing studies.  
The difference between main themes drew from CiteSeer and WoS CiteSeer is due to that 
CiteSeer citation index is primarily a computer, information science and engineering citation 
database, whereas WoS is a comprehensive index. The intellectual structure derived from a 
predominantly science and engineering oriented index is biased toward the technical aspect 
of ubiquitous computing. In contrast, WoS is a comprehensive citation database. WoS 
reveals the application and business themes as well as the technical one. 

 

5. Conclusion 
 

Providing scientists with knowledge visualization tools to reveal the scientific paradigm and 
movements of such a paradigm is a challenge task. We have introduced the method of 
visualizing knowledge structures with emphasis on the role of citation-based methods. 
Factor analysis and Pathfinder Network are used to discover new and significant 
developments of intellectual structure in the ubiquitous computing research field. Literature 
published in the online citation databases CiteSeer and Web of Science (WoS) in 2008 were 
explored to drive the research themes. 
We tried to provide a broader view of ubiquitous computing study by applying intellectual 
structure methods developed by information scientists. The main themes can be uncovered 
with respect to fundamental and important knowledge as well as supporting or 
supplemental knowledge in ubiquitous computing domain. The results obtained show that 
the study of application design for mobile computing, TCP over mobile internetworks, 
network support for real-time applications, foundational ubiquitous computing studies, 
context-aware computing, and ambient intelligent systems are fundamental topics in 
ubiquitous computing. Broadcast based data management for asymmetric communication 
environments, interacting with computer-augmented artefacts and environment, Power 
aware routing protocol and context-aware workflow language are relevant and important 
studies in general, but only play a supporting or supplemental role in ubiquitous computing 
research.  
The benefit of the results obtained could be for someone new to a specific domain in 
research study. The proposed method may be re-used in other disciplines and share across 
different research domains. One of the future directions is to apply this proposed method to 
leverage the research theme networks, which is intellectually interrelated the relationships 
among publications, citations, research projects, and even patents. We also plan to explore 
further the interdisciplinary researches in future studies. 
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1. Introduction

Visual motion is the projection of scene movements on a visual sensor. It is a rich source
of information for the analysis of a visual scene. Especially for dynamic vision systems the
estimation of visual motion is important because it allows to deduce the motion of objects as
well as the self-motion of the system relative to the environment. Therefore, visual motion
serves as a basic information for navigation and exploration tasks, like obstacle avoidance,
object tracking or visual scene decomposition into static and moving parts.
Despite many years of progress, visual motion processing continues to puzzle the mind of
researchers involved in understanding the principles of visual perception. Basic aspects such
as measuring motions of spatially local entities have been widely studied. But what is most
striking about motion processing is its temporal dynamics. This is obvious, because the en-
vironment perceived by a visual observer like a video camera or the human eye is highly
dynamic. Moving objects enter and leave the field of view and also change the way they
move, e.g. change the direction or speed. Hence, suitable assumptions about the dynamics of
the visual scene and about the correlations between local moving entities are beneficial for the
estimation of the scene motion as a whole.
Probabilistic machine learning techniques have become very popular for early vision prob-
lems like binocular depth and optical flow computation. The reason for the popularity is
because of the possibility to explicitly consider uncertainties inherent in the measurement
processes and to incorporate prior knowledge about the state to be estimated. Along this
line of argumentation, we present a general approach to visual motion estimation based on a
probabilistic generative model that allows to infer visual motion from visual data. We start
with a definition of visual motion and point out the basic problems that come along with vi-
sual motion estimation. Then, we summarize common ideas that can be found in different
state-of-the-art optical flow estimation techniques and stress the need for taking uncertainty
into account. Based on the ideas of already existing models we introduce a general Bayesian
framework for dynamic optical flow estimation that comprises several different aspects for
solving the optical flow estimation problem into one common approach.
So far, the research on optical flow has mainly concentrated on motion estimations using the
observation of two frames of an image sequence isolated in time. Our main concern is to
stress that visual motion is a dynamic feature of an image input stream and the more visual
data has been observed the more precise and detailed we can estimate and predict the motion
contained in this visual data. Therefore both motion prediction and observation integration
should be explicitly modeled in an inference procedure for optical flow estimation. Recently
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- because of the development of efficient loopy belief propagation algorithms - Markov Ran-
dom Fields regained great popularity to impose smoothness priors on motion measurements.
On the contrary side, a way to impose consistent priors that has not been paid much atten-
tion lately is to treat the motion estimation as a dynamical system, like in Kalman-Filter ap-
proaches, to propagate motion information along time or scale assuming smoothness along
the time or scale dimension.
In this chapter, we propose to fuse both ideas - spatial smoothness and smoothness along
time and scale - into one common predictive prior model. This allows the formulation of a
probabilistic dynamical system to infer visual motion via spatiotemporal belief propagation.
The main contribution is the proposal of a certain class of transition probability functions
which satisfy a probability mixture model and allow for temporal prediction along with spa-
tial smoothing. For this class of transitions combined with additional factorization assump-
tions and approximate inference techniques it is possible to get a computationally tractable
probabilistic optical flow filter. To show the capability, the benefits, and the drawbacks of
the framework, we derive two realizations: one for continuous Gaussian and one for discrete
grid-based observation likelihoods as well as Mixture of Gaussians and Mixture of Student’s-
t-distributions transitions.

2. Problems of optical flow computation

2.1 Visual motion

I(x,t)

x

v
x2

x1

v1

v2

Fig. 1. How a moving object, e.g. a car, is projected onto a surface.

If we move or if objects move through our field of view then the projection of the environment
onto the retina of our eyes changes. The projections over time form patterns of spatiotempo-
ral brightness changes that encode the movement of the projections called the visual motion
J.J.Gibson (1950). This matter of fact has motivated researchers from diverse areas like psy-
chology of perception, visual neuroscience or computer science to understand the principles
and model the mechanisms behind visual motion estimation.
More technically spoken, image sequences captured from a camera stream are mappings from
the three-dimensional world onto a two-dimensional light-sensing surface - usually a digital
camera-chip - over time. The image brightness I(x, t) at each spatial position x = (x1 x2)

T at
a particular time t (or over some interval of time) is a measurement how much light fell on
the surface. When an object in the world moves relative to this projection surface, the two-
dimensional projection of that object moves within the image sequence. The movement of the
projected position of each point in the world refers to a velocity vector v(x, t) = (v1 v2)

T and
the set of all these vectors is called the motion field Simoncelli (2003). Figure 1 shows a sketch
of the relations just explained.

2.2 Brightness constancy assumption
As mentioned beforehand, the motion field can be estimated using spatiotemporal brightness
patterns. In principle, the quality of any estimation problem depends on the unambiguity of
the relation between the observed data and the state to be inferred Kay (1993). In our case this
is the relation between the observed spatiotemporal brightness and the motion field. The basic
approach to visual motion estimation assumes constant brightness during the time brightness
is measured Horn & Schunk (1981). This assumption implies that changes in brightness can
only be caused by translational movements of the projections onto the image surface with con-
stant velocity. Using the brightness constancy assumption the relation between the brightness
I(x, t) of an image pixel at position x at time t and the corresponding velocity vector v(x, t)
during the time interval ∆t reads

I(x + v(x, t)∆t, t + ∆t) = I(x, t) . (1)

If the time interval ∆t is sufficiently small then the left side of equation (1) can be approximated
via a first order Taylor series Simoncelli (1993) as follows

∇x I(x, t)v(x, t) +
∂I(x, t)

∂t
= 0. (2)

Here, ∇x I(x, t) = (∂I(x, t)/∂x1,∂I(x, t)/∂x2) denotes the spatial brightness gradient and
∂I(x, t)/∂t the temporal derivative of the spatiotemporal brightness pattern. Both equations
(1) and (2) are ill-posed problems because they cannot be solved for the velocity unambigu-
ously. Furthermore, the displacement v∆t is only an approximation to the true visual flow,
called the optical flow Beauchemin & Barron (1995), because the brightness could also change
due to changes in the lighting conditions. Nevertheless, if there is (i) constant illumination
during the time interval ∆t (ii) perpendicular projection of the reflected light onto the image
surface and (iii) purely translational motion of the object parallel to the image surface, then op-
tical flow is equivalent to the true motion field Beauchemin & Barron (1995). There are further
approaches to optical flow computation like the phase-based approach which describes flow
in fourier domain. A detailed description of all the different methods as well as exhaustive
comparisons can be found in Barron et al. (1994).

2.3 Motion ambiguity
Besides incomplete models (1, 2) there are a series of fundamental problems concerning mo-
tion estimation. The movement of an isolated pixel cannot be estimated without considering
its neighboring pixels. Therefore, only using the brightness constancy assumption (1) or the
continuity equation (2) is insufficient. The structure of the local brightness pattern composed
by the neighboring pixels directly affects the uncertainty of the motion estimate of the center
pixel. The velocity v(x, t) is only unique if the brightness within the brightness pattern varies
along the two spatial dimensions. That means, the brightness gradient ∇I(x, t) must not be
zero for any dimension x = (x1 x2)

T . If this condition is not satisfied it is not possible to find
an unambiguous correspondence between pixels (brightness patterns) from temporal consec-
utive image frames, an issue which is also called the aperture or correspondence problem
Jähne (1997).
In figure 2 four types of motion uncertainties caused by an ambiguity in the correspondence
of brightness patterns are shown. Here, a car drives down a road and the motion of four
different parts A-D of the car should be estimated. Although all parts move with the same
velocity the uncertainties of the estimates differ. Part A exhibits no structure in brightness
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the set of all these vectors is called the motion field Simoncelli (2003). Figure 1 shows a sketch
of the relations just explained.

2.2 Brightness constancy assumption
As mentioned beforehand, the motion field can be estimated using spatiotemporal brightness
patterns. In principle, the quality of any estimation problem depends on the unambiguity of
the relation between the observed data and the state to be inferred Kay (1993). In our case this
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is measured Horn & Schunk (1981). This assumption implies that changes in brightness can
only be caused by translational movements of the projections onto the image surface with con-
stant velocity. Using the brightness constancy assumption the relation between the brightness
I(x, t) of an image pixel at position x at time t and the corresponding velocity vector v(x, t)
during the time interval ∆t reads

I(x + v(x, t)∆t, t + ∆t) = I(x, t) . (1)

If the time interval ∆t is sufficiently small then the left side of equation (1) can be approximated
via a first order Taylor series Simoncelli (1993) as follows

∇x I(x, t)v(x, t) +
∂I(x, t)

∂t
= 0. (2)

Here, ∇x I(x, t) = (∂I(x, t)/∂x1,∂I(x, t)/∂x2) denotes the spatial brightness gradient and
∂I(x, t)/∂t the temporal derivative of the spatiotemporal brightness pattern. Both equations
(1) and (2) are ill-posed problems because they cannot be solved for the velocity unambigu-
ously. Furthermore, the displacement v∆t is only an approximation to the true visual flow,
called the optical flow Beauchemin & Barron (1995), because the brightness could also change
due to changes in the lighting conditions. Nevertheless, if there is (i) constant illumination
during the time interval ∆t (ii) perpendicular projection of the reflected light onto the image
surface and (iii) purely translational motion of the object parallel to the image surface, then op-
tical flow is equivalent to the true motion field Beauchemin & Barron (1995). There are further
approaches to optical flow computation like the phase-based approach which describes flow
in fourier domain. A detailed description of all the different methods as well as exhaustive
comparisons can be found in Barron et al. (1994).

2.3 Motion ambiguity
Besides incomplete models (1, 2) there are a series of fundamental problems concerning mo-
tion estimation. The movement of an isolated pixel cannot be estimated without considering
its neighboring pixels. Therefore, only using the brightness constancy assumption (1) or the
continuity equation (2) is insufficient. The structure of the local brightness pattern composed
by the neighboring pixels directly affects the uncertainty of the motion estimate of the center
pixel. The velocity v(x, t) is only unique if the brightness within the brightness pattern varies
along the two spatial dimensions. That means, the brightness gradient ∇I(x, t) must not be
zero for any dimension x = (x1 x2)

T . If this condition is not satisfied it is not possible to find
an unambiguous correspondence between pixels (brightness patterns) from temporal consec-
utive image frames, an issue which is also called the aperture or correspondence problem
Jähne (1997).
In figure 2 four types of motion uncertainties caused by an ambiguity in the correspondence
of brightness patterns are shown. Here, a car drives down a road and the motion of four
different parts A-D of the car should be estimated. Although all parts move with the same
velocity the uncertainties of the estimates differ. Part A exhibits no structure in brightness
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at all. Therefore, the brightness is constant over both spatial position and time. In this case,
the brightness places no constraint on the velocity Simoncelli (2003). The local brightness of
parts B and C varies only in one direction. In these cases, only the velocity component that is
perpendicular to the edge direction is constrained. Along the edges the brightness does not
change and thus the velocity component parallel to the edge direction cannot be estimated. In
part D, the local brightness varies along two dimensions, in which case the optical flow vector
is uniquely constrained and the velocity estimate gets unambiguous.
Another problem that forces ambiguities are pixel occlusions at motion boundaries. This is
depicted in figure 3. Part A and B show two situations with brightness patterns overlapping
while moving. This leads to occlusion of neighboring pixels that have been seen beforehand
and newly appearing pixels that have been occluded in the past. The brightness pattern within
a neighborhood of pixels along such motion boundaries are not stable over time and therefore
temporal correspondences cannot be found unambiguously.

3. Motion disambiguation

To be able to capture all these ambiguities some authors Simoncelli et al. (1991); Zetzsche
& Krieger (2001) propose to introduce uncertainty to the model that describes the relation

between image intensities and pixel velocities. For this purpose, the velocity of an image
location and the images of a sequence are understood as statistical signals

I(x + (v(x, t) + ηv)∆t, t + ∆t) = I(x, t) + ηI , (3)

with ηv defining additive noise on the velocity and ηI additive noise on the image intensity.
More general, a function FI

FI

(
I
(
x + (v(x, t) + ηv)∆t, t + ∆t

)
, I
(
x, t

))
= ηI , (4)

defines the relation between temporal consecutive images and the flow field. This implies
probabilities for the existence of image intensities and velocities namely conditional probabil-
ity density functions (pdf)

P
(

I(x, t + ∆t)|I(x, t),v(x, t)
)

(5)

that represent the uncertain relation between image observations I(x, t + ∆t) conditioned on
image observations I(x, t) and on the hidden states v(x, t). Using Bayes’ rule and some prior
knowledge about the distribution of the velocity P(v(x, t)) and the intensities P(I(x, t)) the
conditional pdf for the velocity conditioned on the image data can be inferred

P
(

I(x, t + ∆t), I(x, t),v(x, t)
)

= P
(

I(x, t + ∆t)|I(x, t),v(x, t)
)
× P

(
I(x, t)

)
× P

(
v(x, t)

)

= P
(
v(x, t)|I(x, t + ∆t), I(x, t)

)
× P

(
I(x, t + ∆t)

)
× P

(
I(x, t)

)
,

P
(
v(x, t)|I(x, t + ∆t), I(x, t)

)
=

P
(

I(x, t + ∆t)|I(x, t),v(x, t)
)
× P

(
v(x, t)

)

P
(

I(x, t + ∆t)
) . (6)

So far, the velocities v(x, t) and the image intensities I(x, t) have been assumed to be inde-
pendent for different positions x and times t. This is already a strong approximation. In the
next section this approximation is relaxed towards more spatiotemporal dependence. The ex-
pectation is that pdfs are able to tackle the addressed ambiguity problems related to motion
processing. As can be seen in Simoncelli (1993); Weiss (1993); Zelek (2002) specific information
about the mentioned problems can, in principle, be extracted from the shape of the pdfs.
During the last ten years velocity distributions have been suggested and discussed by several
authors Simoncelli et al. (1991); Singh (1990); Weiss & Fleet (2002); Wu (1995). Additionally,
a lot of different mainly deterministic approaches have been developed for visual motion es-
timation Baker et al. (2007); Beauchemin & Barron (1995). All these approaches are based on
common constraints on the flow field that are suitable for disambiguation and improvement
of the estimates. The constraints F define correlations between motion estimations at different
points in image location x, different points in time t or different image scales k. Assuming
independence between the dimensions x, t, and k the constraints can be formulated in a prob-
abilistic way as

Fx
(
v(x, t,k),{v(x′, t,k)}x′

)
= ηx , (7)

Ft
(
v(x, t,k),{v(x, t′,k)}t′

)
= ηt , (8)

Fk
(
v(x, t,k),{v(x, t,k′)}k′

)
= ηk . (9)

Here, {v(x′, t,k)}x′ denotes the set of spatial neighbors to pixel velocity v(x, t,k). The con-
straint is defined by the function Fx and ηx considers additive noise on the constraining model.
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at all. Therefore, the brightness is constant over both spatial position and time. In this case,
the brightness places no constraint on the velocity Simoncelli (2003). The local brightness of
parts B and C varies only in one direction. In these cases, only the velocity component that is
perpendicular to the edge direction is constrained. Along the edges the brightness does not
change and thus the velocity component parallel to the edge direction cannot be estimated. In
part D, the local brightness varies along two dimensions, in which case the optical flow vector
is uniquely constrained and the velocity estimate gets unambiguous.
Another problem that forces ambiguities are pixel occlusions at motion boundaries. This is
depicted in figure 3. Part A and B show two situations with brightness patterns overlapping
while moving. This leads to occlusion of neighboring pixels that have been seen beforehand
and newly appearing pixels that have been occluded in the past. The brightness pattern within
a neighborhood of pixels along such motion boundaries are not stable over time and therefore
temporal correspondences cannot be found unambiguously.

3. Motion disambiguation

To be able to capture all these ambiguities some authors Simoncelli et al. (1991); Zetzsche
& Krieger (2001) propose to introduce uncertainty to the model that describes the relation

between image intensities and pixel velocities. For this purpose, the velocity of an image
location and the images of a sequence are understood as statistical signals
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that represent the uncertain relation between image observations I(x, t + ∆t) conditioned on
image observations I(x, t) and on the hidden states v(x, t). Using Bayes’ rule and some prior
knowledge about the distribution of the velocity P(v(x, t)) and the intensities P(I(x, t)) the
conditional pdf for the velocity conditioned on the image data can be inferred
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So far, the velocities v(x, t) and the image intensities I(x, t) have been assumed to be inde-
pendent for different positions x and times t. This is already a strong approximation. In the
next section this approximation is relaxed towards more spatiotemporal dependence. The ex-
pectation is that pdfs are able to tackle the addressed ambiguity problems related to motion
processing. As can be seen in Simoncelli (1993); Weiss (1993); Zelek (2002) specific information
about the mentioned problems can, in principle, be extracted from the shape of the pdfs.
During the last ten years velocity distributions have been suggested and discussed by several
authors Simoncelli et al. (1991); Singh (1990); Weiss & Fleet (2002); Wu (1995). Additionally,
a lot of different mainly deterministic approaches have been developed for visual motion es-
timation Baker et al. (2007); Beauchemin & Barron (1995). All these approaches are based on
common constraints on the flow field that are suitable for disambiguation and improvement
of the estimates. The constraints F define correlations between motion estimations at different
points in image location x, different points in time t or different image scales k. Assuming
independence between the dimensions x, t, and k the constraints can be formulated in a prob-
abilistic way as
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Here, {v(x′, t,k)}x′ denotes the set of spatial neighbors to pixel velocity v(x, t,k). The con-
straint is defined by the function Fx and ηx considers additive noise on the constraining model.
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time, or scale dimension.

For the set of temporal t′ and scale k′ neighbors the notations are analogous. The most general
case would be to assume total dependence between all dimensions

F
(
v(x, t,k),{v(x′, t,k)}x′ ,{v(x, t′,k)}t′ ,{v(x, t,k′)}k′

)
= η . (10)

Unfortunately, considering full dependence together with a probabilistic treatment leads to
combinatorial explosion and is in most cases computationally intractable.
A sketch of the three different types of independent disambiguation along the three dimen-
sions is given in figure 4. The most established method to reduce ambiguities is the inte-
gration of motion information over space (see Fig. 4 first row). That means, interactions be-
tween neighboring velocities or even higher order derivations are considered Anandan (1989);
Beauchemin & Barron (1995); Horn & Schunk (1981); Lukas & Kanade (1981). This is often
accounted for by smoothness constraints for neighboring velocities assuming that all pixels
within the neighborhood Ω move similarly.
Further improvements are made using multiscale approaches (see Fig. 4 second row). This
is desirable, e.g., for being able to represent both large and small velocities at coarse and fine
resolutions with a reasonable effort. It is usually done in such a way that the larger velocities
at coarser scale are calculated first, then a warped version of the image is calculated using
these large, coarsely sampled velocities, and afterwards the residual velocities at the next finer
scale are calculated, since they have been calculated in a frame that is moving along with the
velocities extracted from coarser scale Anandan (1989); Bergen et al. (1992); Brox et al. (2004);
Memin & Perez (1998); Weber & Malik (1995).
Another important aspect of motion estimation is the fact that motion is a dynamic feature
of an image sequence. Thus, the longer we observe a movement the more precisely we can
estimate and predict its characteristics. This has motivated several approaches Black (1994);
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Fig. 5. A probabilistic directed graphical model for visual motion estimation. Here, t′ = t + 1
and t′′ = t + 2 denote future timesteps and k′ = k + 1 and k′′ = k + 2 denote finer scales.
Observable nodes are shaded gray, hidden nodes are white.

Elad & Feuer (1998); Singh (1991) to recursively estimate the optical flow over time including
a prediction model that defines some temporal relation between pixel movements (see Fig. 4
third row). For prediction, a model for the underlying dynamics is needed to predict image
motion.
Some authors work in a probabilistic framework assuming that velocity distributions are
Gaussian parameterized by a mean and covariance. Kalman filtering can then be used to
properly combine the information from scale to scale or time to time taking into account un-
certainties of the measurements Simoncelli (1999); Singh (1991). The presumption of Gaussian
distributed velocity measurements is sometimes incomplete because velocity distributions are
often multimodal or ambiguous Simoncelli et al. (1991); Weiss & Fleet (2002), especially at mo-
tion boundaries. To circumvent this problem, particle filtering methods for non-Gaussian ve-
locity distributions have recently been used to improve motion estimation for tracking single
or multiple objects in a scene Isard & Blake (1998); Rosenberg & Werman (1997).

4. A dynamical system for motion estimation

Having all the different possibilities of motion disambiguation in mind, the question is how to
unify them in one general framework for motion estimation. In this section we derive a quite
general probabilistic solution which is still computationally tractable.

4.1 Dynamic Bayesian Network
A Dynamic Bayesian Network (DBN) is a directed graphical model of a dynamic stochastic
process. Here, we propose such a network as depicted in figure 5 to model the dynamics of
visual motion. The structure of the graphical model in figure 5 is similar to a Markov random
field. The difference is that the edges are directed. As can be seen, it tightly couples several
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within the neighborhood Ω move similarly.
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scale are calculated, since they have been calculated in a frame that is moving along with the
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Elad & Feuer (1998); Singh (1991) to recursively estimate the optical flow over time including
a prediction model that defines some temporal relation between pixel movements (see Fig. 4
third row). For prediction, a model for the underlying dynamics is needed to predict image
motion.
Some authors work in a probabilistic framework assuming that velocity distributions are
Gaussian parameterized by a mean and covariance. Kalman filtering can then be used to
properly combine the information from scale to scale or time to time taking into account un-
certainties of the measurements Simoncelli (1999); Singh (1991). The presumption of Gaussian
distributed velocity measurements is sometimes incomplete because velocity distributions are
often multimodal or ambiguous Simoncelli et al. (1991); Weiss & Fleet (2002), especially at mo-
tion boundaries. To circumvent this problem, particle filtering methods for non-Gaussian ve-
locity distributions have recently been used to improve motion estimation for tracking single
or multiple objects in a scene Isard & Blake (1998); Rosenberg & Werman (1997).

4. A dynamical system for motion estimation

Having all the different possibilities of motion disambiguation in mind, the question is how to
unify them in one general framework for motion estimation. In this section we derive a quite
general probabilistic solution which is still computationally tractable.

4.1 Dynamic Bayesian Network
A Dynamic Bayesian Network (DBN) is a directed graphical model of a dynamic stochastic
process. Here, we propose such a network as depicted in figure 5 to model the dynamics of
visual motion. The structure of the graphical model in figure 5 is similar to a Markov random
field. The difference is that the edges are directed. As can be seen, it tightly couples several
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Markov chains along time that are defined for each scale k via Markov chains along scale defined
at each time step t. Note that the DBN forces an independency structure. The probability that
a node is in one of its states depends directly only on the states of its parents Yedidia et al.
(2003).
We assume a generative model for the observables Ytk of an image sequence I1:T,1:K with T
images at equidistant points in time t ∈ T at K spatial resolution scales k ∈ K with t′ = t + 1
and k′ = k + 1 being the next time step and the next finer scale, respectively. Without loss of
generalization we define the time intervals ∆t = 1 and scale intervals ∆k = 1 to be unity. Here,
the observable Ytk comprises image data of several frames within a time interval around t at
the same scale k. For example, Ytk = (Itk, It′k) has to be at least a pair of images with both
images being defined over the same image range Xk at the same scale k but at consecutive
points in time t and t′. Each image Itk consists of image intensities Itk

x at each image position
x ∈ X k. Similarly, the hidden state Vtk is a flow field at time slice t and scale k defined over
the image range Xk with velocity vectors vtk

x at each image position x.

4.2 Generative model
The probabilistic generative model is precisely defined by the following probabilities and fac-
torization assumptions:
First, an initial prior for the flow field at time t = 1 and scale k = 1

P(V11) = ∏
x

P(v11
x ) , (11)

defining some preference for the speed and direction of the velocities in the flow field. Often
this is chosen to be a product of zero mean Gaussian distributions to prefer slow and smooth
velocities Weiss & Fleet (2002). Second, the specification of the observation likelihood for the
images Ytk given the flow Vtk for all times t ∈ T and scales k ∈ K

P(Ytk|Vtk) = ∏
x
�(Ytk,vtk

x ) . (12)

This factorisation assumption is somewhat unusual because we do not assume the image ob-
servation to factorize in pixel observations but assume the observation likelihood to factorize
in the velocities only. And third, the specification of the transition probabilities for the flow
fields Vt′k′ at the new timestep t′ at finer scale k′ given the flow field Vt′k at the same time t′

but coarser scale k and the flow field Vtk′ from last time t but at the same scale k′. For the first
time slice t = 1 and the coarsest scale k = 1 the transitions are conditioned only on one flow
field V1k or Vt1.

P(V1k′ |V1k) = ∏
x

φk(v
1k′
x ,V1k) ,

P(Vt′1|Vt1) = ∏
x

φt(vt′1
x ,Vt1) ,

P(Vt′k′ |Vt′k,Vtk′ ) = ∏
x

φk(v
t′k′
x ,Vt′k)φt(vt′k′

x ,Vtk′ ) . (13)

These equations explicitly express that the probability distribution for each flow field fac-
torises into independent distributions for each velocity vector. Nevertheless, although each
velocity vector is not dependent on velocity vectors from the flow field at the same time and
scale it heavily depends on all the velocity vectors from the flow fields at coarser scale and
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Vt k
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x
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x
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t
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Fig. 6. Pairwise potentials of the scale-time transition probability.

past time. Further on, the conditional dependence P(vt′k′
x |Vt′k,Vtk′ ) can be split in two pair-

wise potentials φk, φt. This will allow us to maintain only factored beliefs during inference,
which makes the approach computationally practicable.

4.3 A general class of flow field transitions
To further specify the generative model we have to define the formulas for the prior (11), the
observation likelihood (12), and the transitions (13). Some concrete examples are given in
the next section 5. For the flow field transitions in equation (13) we propose a certain class
of transition probability functions which satisfy a probability mixture model. Equation (13)
consists of two pairwise potentials. The first potential φt(vt′k′

x ,Vtk′ ) assumes that the flow
field at every spatial scale k transforms from t → t′ according to itself. The second potential
φk(vt′k′

x ,Vt′k) realizes a refinement from coarser to finer scale k → k′ at every time t′. A sketch
of the information flow is shown in figure 6.
To motivate the temporal transition factor φt(vt′k′

x ,Vtk′ ) we assume that the direction and
speed of a flow vector vt′k′

x at position x at time t′ is functionally related to a previous flow
vector vtk′

x′ at some corresponding position x′ at time t,

vt′k′
x ∼ ft(vt′k′

x ,vtk′
x′ ;θt) , (14)

including some free parameters θt that allow for adaptation of the temporal relation. Now,
asking what the corresponding position x′ in the previous image was, we assume that we can
infer it from the flow field itself as follows

x′ ∼ fxt(x′,x − vt′k′
x ;θxt) . (15)

In principle fxt can be any arbitrary function that defines the relation between neighboring
positions. Again the free parameters θxt allow for adaptation of the spatial relation. Note that
here we use vt′k′

x to retrieve the previous corresponding point x′. This is a suitable approxima-
tion as long as the similarity vt′k′

x ≈ vtk′
x′ is not heavily violated. Combining both factors (14)
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torises into independent distributions for each velocity vector. Nevertheless, although each
velocity vector is not dependent on velocity vectors from the flow field at the same time and
scale it heavily depends on all the velocity vectors from the flow fields at coarser scale and
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Fig. 6. Pairwise potentials of the scale-time transition probability.

past time. Further on, the conditional dependence P(vt′k′
x |Vt′k,Vtk′ ) can be split in two pair-

wise potentials φk, φt. This will allow us to maintain only factored beliefs during inference,
which makes the approach computationally practicable.

4.3 A general class of flow field transitions
To further specify the generative model we have to define the formulas for the prior (11), the
observation likelihood (12), and the transitions (13). Some concrete examples are given in
the next section 5. For the flow field transitions in equation (13) we propose a certain class
of transition probability functions which satisfy a probability mixture model. Equation (13)
consists of two pairwise potentials. The first potential φt(vt′k′

x ,Vtk′ ) assumes that the flow
field at every spatial scale k transforms from t → t′ according to itself. The second potential
φk(vt′k′

x ,Vt′k) realizes a refinement from coarser to finer scale k → k′ at every time t′. A sketch
of the information flow is shown in figure 6.
To motivate the temporal transition factor φt(vt′k′

x ,Vtk′ ) we assume that the direction and
speed of a flow vector vt′k′

x at position x at time t′ is functionally related to a previous flow
vector vtk′

x′ at some corresponding position x′ at time t,

vt′k′
x ∼ ft(vt′k′

x ,vtk′
x′ ;θt) , (14)

including some free parameters θt that allow for adaptation of the temporal relation. Now,
asking what the corresponding position x′ in the previous image was, we assume that we can
infer it from the flow field itself as follows

x′ ∼ fxt(x′,x − vt′k′
x ;θxt) . (15)

In principle fxt can be any arbitrary function that defines the relation between neighboring
positions. Again the free parameters θxt allow for adaptation of the spatial relation. Note that
here we use vt′k′

x to retrieve the previous corresponding point x′. This is a suitable approxima-
tion as long as the similarity vt′k′

x ≈ vtk′
x′ is not heavily violated. Combining both factors (14)
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and (15) and integrating x′ leads to the first pairwise potential

φt(vt′k′
x ,Vtk′ ) = ∑

x′
fxt(x′,x − vt′k′

x ;θxt) ft(vt′k′
x ,vtk′

x′ ;θt) . (16)

Equivalent to (14) for the scale transition factor φk(v1k′
x ,V1k) we assume that the origin of a

flow vector vt′k′
x at position x at finer scale k′ corresponds to a flow vector vt′k

x′′ from coarser
scale k at some corresponding position x′′,

vt′k′
x ∼ fk(v

t′k′
x ,vt′k

x′′ ;θk) . (17)

Since it is uncertain how strong a position x′′ at coarser scale k influences the velocity estimate
at position x at finer scale k′, we assume that we can infer it from the neighborhood similar to
(15)

x′′ ∼ fxk(x
′′,x;θxk) . (18)

The considerations for the scale transition are analogous to the ones for the temporal tran-
sition. Again, combining both factors (17) and (18) and integrating x′′ we get the second
pairwise potential

φk(v
t′k′
x ,Vt′k) = ∑

x′′
fxk(x

′′,x;θxk) fk(v
t′k′
x ,vt′k

x′′ ;θk) , (19)

that imposes a spatial smoothness constraint on the flow field via spatial weighting of motion
estimations from coarser scale. The combination of both potentials (16) and (19) results in the
complete conditional flow field transition probability as given in (13). The transition factors
(16) and (19) allow us to unroll two different kinds of spatial constraints along the temporal
and the scale axes while adapting the free parameters for scale and time transition differ-
ently. This is done by splitting not only the transition in two pairwise potentials, one for the
temporal- and one for the scale-transition, but also every potential in itself in two factors, one
for the transition noise and the other one for an additional spatial constraint. In this way, the
coupling of the potentials (16) and (19) realizes a combination of (A) scale-time prediction and
(B) an integration of motion information neighboring in time, in space, and in scale.

4.4 Inference
The overall data likelihood P(Y1:T,1:K ,V1:T,1:K) is assumed to factorize as defined by the di-
rected graph in figure 5

P(Y1:T,1:K ,V1:T,1:K) =
T

∏
t=1

K

∏
k=1

P(Ytk|Vtk)× P(V11)×

T−1

∏
t=1

P(Vt′1|Vt1)
K−1

∏
k=1

P(V1k′ |V1k)P(Vt′k′ |Vt′k,Vtk′ ) . (20)

What we are usually interested in is the probability for some flow field given all the data
aquired so far. For the offline case where all the data of a sequence is accessible this would be
the probability P(Vtk|Y1:T,1:K). For the online case where only the past data is accessible the
probability P(Vtk|Y1:t,1:K) would be interesting. To infer these probabilities, Bayes’ rule and
marginalization has to be applied. For the offline case this reads

P(Vtk|Y1:T,1:K) = ∑
V1:T,1:K\Vtk

P(Y1:T,1:K ,V1:T,1:K)

P(Y1:T,1:K)
. (21)

The online case neglects future observations and simplifies to

P(Vtk|Y1:t,1:K) = ∑
V1:t,1:K\Vtk

P(Y1:t,1:K ,V1:t,1:K)

P(Y1:t,1:K)
. (22)

Either for the online or offline case, the direct computation of the marginals using equation
(21) or (22) would take exponential time Yedidia et al. (2003). The most prominent solution to
this problem is Belief Propagation (BP) which is a very efficient approximate inference algorithm
especially applicable if the graph has a lot of loops and many hidden nodes like it is the case
for our graphical model for dynamic motion estimation (see figure 5).

4.5 Approximate inference
Here, we propose an approximate inference algorithm based on Belief Propagation and re-
strict ourselves to the online case (22) since its extension to the offline case is straightforward
Bishop (2006) (see also section 5). The marginal probabilities that are now computed only
approximately are called beliefs and here we use α’s as the notation for forward filtered beliefs

α(vtk
x ) ≈ P(vtk

x |Y1:t,1:K) . (23)

Let us start with the inference of the flow field at first time slice t = 1 and coarsest scale k = 1
just having access to the observable Y11. Applying Bayes’ rule we get

α(v11
x ) = P(v11

x |Y11) =
�(Y11,v11

x )P(v11
x )

P(Y11)
. (24)

This is the initial belief that has to be propagated along time and scale. To derive an approxi-
mate forward filter suitable for online applications we propose the following message passing
scheme that realizes a recurrent update of the beliefs. Let us assume, we isolate one time slice
at time t and neglect all past and future beliefs, then we would have to propagate the mes-
sages mk→k′ from coarse to fine and the messages mk′→k from fine to coarse to compute a belief
over the scale Markov chain. Similarly, if we isolate one scale k for all time slices and neglect
all coarser and finer beliefs, then we would have to propagate the messages mt→t′ from the
past to the future and the messages mt′→t from the future to the past to compute a belief over
the temporal Markov chain. For the realization of a forward scale-time filter, we combine the
forward passing of temporal messages mt→t′ and the computation of the likelihood messages
mY→v = �(Yt′k′ ,vt′k′

x ) at all scales k. As a simplification we restrict ourselves to propagating
messages only in one direction k → k′ and neglect passing back the message mk′→k. The con-
sequence of this is that not all the V-nodes at time t have seen all the data Y1:t,1:K but only all
past data up to the current scale Y1:t,1:k. This reduces computational costs but the flow field
on the finest scale Vt,K is now the only node that sees all the data Y1:t,1:K . Nevertheless, we
also tested passing back the messages mk′→k which only slightly improved the accuracy but
increased computational costs.
The factored observation likelihood and the transition probability we introduced in (12) and
(13) ensure that the forward propagated joint belief

P(Vt,1:K |Y1:t,1:K) = ∏
x

P(vt,1:K
x |Y1:t,1:K)
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and (15) and integrating x′ leads to the first pairwise potential

φt(vt′k′
x ,Vtk′ ) = ∑

x′
fxt(x′,x − vt′k′

x ;θxt) ft(vt′k′
x ,vtk′

x′ ;θt) . (16)

Equivalent to (14) for the scale transition factor φk(v1k′
x ,V1k) we assume that the origin of a

flow vector vt′k′
x at position x at finer scale k′ corresponds to a flow vector vt′k

x′′ from coarser
scale k at some corresponding position x′′,

vt′k′
x ∼ fk(v

t′k′
x ,vt′k

x′′ ;θk) . (17)

Since it is uncertain how strong a position x′′ at coarser scale k influences the velocity estimate
at position x at finer scale k′, we assume that we can infer it from the neighborhood similar to
(15)

x′′ ∼ fxk(x
′′,x;θxk) . (18)

The considerations for the scale transition are analogous to the ones for the temporal tran-
sition. Again, combining both factors (17) and (18) and integrating x′′ we get the second
pairwise potential

φk(v
t′k′
x ,Vt′k) = ∑

x′′
fxk(x

′′,x;θxk) fk(v
t′k′
x ,vt′k

x′′ ;θk) , (19)

that imposes a spatial smoothness constraint on the flow field via spatial weighting of motion
estimations from coarser scale. The combination of both potentials (16) and (19) results in the
complete conditional flow field transition probability as given in (13). The transition factors
(16) and (19) allow us to unroll two different kinds of spatial constraints along the temporal
and the scale axes while adapting the free parameters for scale and time transition differ-
ently. This is done by splitting not only the transition in two pairwise potentials, one for the
temporal- and one for the scale-transition, but also every potential in itself in two factors, one
for the transition noise and the other one for an additional spatial constraint. In this way, the
coupling of the potentials (16) and (19) realizes a combination of (A) scale-time prediction and
(B) an integration of motion information neighboring in time, in space, and in scale.

4.4 Inference
The overall data likelihood P(Y1:T,1:K ,V1:T,1:K) is assumed to factorize as defined by the di-
rected graph in figure 5

P(Y1:T,1:K ,V1:T,1:K) =
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∏
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k=1

P(V1k′ |V1k)P(Vt′k′ |Vt′k,Vtk′ ) . (20)

What we are usually interested in is the probability for some flow field given all the data
aquired so far. For the offline case where all the data of a sequence is accessible this would be
the probability P(Vtk|Y1:T,1:K). For the online case where only the past data is accessible the
probability P(Vtk|Y1:t,1:K) would be interesting. To infer these probabilities, Bayes’ rule and
marginalization has to be applied. For the offline case this reads

P(Vtk|Y1:T,1:K) = ∑
V1:T,1:K\Vtk

P(Y1:T,1:K ,V1:T,1:K)

P(Y1:T,1:K)
. (21)

The online case neglects future observations and simplifies to

P(Vtk|Y1:t,1:K) = ∑
V1:t,1:K\Vtk

P(Y1:t,1:K ,V1:t,1:K)

P(Y1:t,1:K)
. (22)

Either for the online or offline case, the direct computation of the marginals using equation
(21) or (22) would take exponential time Yedidia et al. (2003). The most prominent solution to
this problem is Belief Propagation (BP) which is a very efficient approximate inference algorithm
especially applicable if the graph has a lot of loops and many hidden nodes like it is the case
for our graphical model for dynamic motion estimation (see figure 5).

4.5 Approximate inference
Here, we propose an approximate inference algorithm based on Belief Propagation and re-
strict ourselves to the online case (22) since its extension to the offline case is straightforward
Bishop (2006) (see also section 5). The marginal probabilities that are now computed only
approximately are called beliefs and here we use α’s as the notation for forward filtered beliefs

α(vtk
x ) ≈ P(vtk

x |Y1:t,1:K) . (23)

Let us start with the inference of the flow field at first time slice t = 1 and coarsest scale k = 1
just having access to the observable Y11. Applying Bayes’ rule we get

α(v11
x ) = P(v11

x |Y11) =
�(Y11,v11

x )P(v11
x )

P(Y11)
. (24)

This is the initial belief that has to be propagated along time and scale. To derive an approxi-
mate forward filter suitable for online applications we propose the following message passing
scheme that realizes a recurrent update of the beliefs. Let us assume, we isolate one time slice
at time t and neglect all past and future beliefs, then we would have to propagate the mes-
sages mk→k′ from coarse to fine and the messages mk′→k from fine to coarse to compute a belief
over the scale Markov chain. Similarly, if we isolate one scale k for all time slices and neglect
all coarser and finer beliefs, then we would have to propagate the messages mt→t′ from the
past to the future and the messages mt′→t from the future to the past to compute a belief over
the temporal Markov chain. For the realization of a forward scale-time filter, we combine the
forward passing of temporal messages mt→t′ and the computation of the likelihood messages
mY→v = �(Yt′k′ ,vt′k′

x ) at all scales k. As a simplification we restrict ourselves to propagating
messages only in one direction k → k′ and neglect passing back the message mk′→k. The con-
sequence of this is that not all the V-nodes at time t have seen all the data Y1:t,1:K but only all
past data up to the current scale Y1:t,1:k. This reduces computational costs but the flow field
on the finest scale Vt,K is now the only node that sees all the data Y1:t,1:K . Nevertheless, we
also tested passing back the messages mk′→k which only slightly improved the accuracy but
increased computational costs.
The factored observation likelihood and the transition probability we introduced in (12) and
(13) ensure that the forward propagated joint belief

P(Vt,1:K |Y1:t,1:K) = ∏
x

P(vt,1:K
x |Y1:t,1:K)
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will remain factored. Similar to BP in a Markov random field, we assume independency for
all neighboring nodes in the Markov blanket. This means the belief over Vtk and Vtk′ at time
t is assumed to be factored which implies that also the belief over Vt′k and Vtk′ factorizes.

P(Vt′k,Vtk′ |Y1:t′ ,1:k′ \ Yt′k′ ) = P(Vt′k|Y1:t′ ,1:k)P(Vtk′ |Y1:t,1:k′ ) = ∏
x

α(vt′k
x )α(vtk′

x ) , (25)

where we used \ as the notation for excluding Yt′k′ from the set of measurements Y1:t′ ,1:k′ .
The two-dimensional forward filter propagates the belief over Vt′k and Vtk′ from (25) via
multiplying with the scale-time transition (13) and marginalizing over Vt′k and Vtk′ . The
result is multiplied with the new observation likelihood (12) and normalized by P(Yt′k′ ) to
get the updated belief

P(vt′k′
x |Y1:t′ ,1:k′ ) = 1

P(Yt′k′ )
�(Yt′k′ ,vt′k′

x ) ∑
Vt′k

∑
Vtk′

P(vt′k′
x |Vt′k,Vtk′ )P(Vt′k,Vtk′ |Y1:t′ ,1:k′ \ Yt′k′ ) ,

α(vt′k′
x ) ∝ mY→v(vt′k′

x ) ∑
Vt′k

∑
Vtk′

︷ ︸︸ ︷
φk(v

t′k′
x ,Vt′k)φt(vt′k′

x ,Vtk′ )

︷ ︸︸ ︷
∏

x
α(vt′k

x )α(vtk′
x ) ,

∝ mY→v(vt′k′
x ) ∑

Vt′k

φk(v
t′k′
x ,Vt′k)∏

x
α(vt′k

x )

︸ ︷︷ ︸
∑
Vtk′

φt(vt′k′
x ,Vtk′ )∏

x
α(vtk′

x )

︸ ︷︷ ︸
,

∝ mY→v(vt′k′
x ) × mk→k′ (v

t′k′
x ) × mt→t′ (vt′k′

x ) . (26)

As can be seen, the complete scale-time forward filter can now be defined by the computation
of updated beliefs α as the product of incoming messages,

α(vtk
x ) ∝ mY→v(vtk

x ) mk→k′ (v
tk
x ) mt→t′ (vtk

x ) . (27)

Inserting the proposed class of temporal transitions (16) into (26) leads to the following tem-
poral message

mt→t′ (vt′k′
x ) = ∑

Vtk′
φt(vt′k′

x ,Vtk′ )∏
x

α(vtk′
x ) ,

= ∑
Vtk′

∑
x′

fxt(x′,x − vt′k′
x ;θxt) ft(vt′k′

x ,vtk′
x′ ;θt)∏

x
α(vtk′

x ) ,

= ∑
vtk′

x

∑
x′

fxt(x′,x − vt′k′
x ;θxt) ft(vt′k′

x ,vtk′
x′ ;θt)α(vtk′

x ) ∑
Vtk′

\vtk′
x′

∏
z �=x′

α(vtk′
z )

︸ ︷︷ ︸
1

,

= ∑
x′

fxt(x′,x − vt′k′
x ;θxt)∑

vtk′
x

ft(vt′k′
x ,vtk′

x′ ;θt)α(vtk′
x′ ) . (28)

Note that the summation ∑Vtk′ is summing over all possible flow fields, i.e. ∑Vtk′ repre-
sents Xk summations ∑vtk′

1,1
∑vtk′

1,2
∑vtk′

2,1
· · · over each local flow field vector. We separated these

into a summation ∑vtk′
x′

over the flow field vector at x′ and a summation ∑Vtk′ \vtk′
x′

over all

other flow field vectors at x �= x′. Then, we use the equivalence ∑Vtk′ \vtk′
x′

∏z �=x′ α(vtk′
z ) =

Algorithm 1 Scale-Time Filter

Initialize the priors α(v0,1:K
x )

for t′ = 1 to T do
for k′ = 1 to K do

for x = 1 to Xk′ do

Compute the messages

mY→v(vt′k′
x )

mt→t′ (vt′k′
x ) = ∑

x′
fxt(x′,x − vt′k′

x ;θxt)∑vtk′
x

ft(vt′k′
x ,vtk′

x′ ;θt)α(vtk′
x′ )

mk→k′ (vt′k′
x ) = ∑

x′
fxk(x′,x;θxk)∑vt′k

x
fk(vt′k′

x ,vt′k
x′ ;θk)α(vt′k

x′ )

Update the beliefs

α(vt′k′
x ) ∝ mY→v(vt′k′

x ) mt→t′ (vt′k′
x ) mk→k′ (vt′k′

x )

end for
end for

end for

∏z �=x′ ∑vtk′
z

α(vtk′
z ) = 1. Similarly, we arrive at the scale message if we insert the scale tran-

sition (19) into (26)

mk→k′ (v
t′k′
x ) = ∑

Vt′k

φk(v
t′k′
x ,Vt′k)∏

x
α(vt′k

x ) ,

= ∑
Vt′k

∑
x′

fxk(x
′,x;θxk) fk(v

t′k′
x ,vt′k

x′ ;θk)∏
x

α(vt′k
x ) ,

= ∑
vt′k

x

∑
x′

fxk(x
′,x;θxk) fk(v

t′k′
x ,vt′k

x′ ;θk)α(v
t′k
x′ ) ∑

Vt′k

\vt′k
x

∏
z �=x′

α(vt′k
z )

︸ ︷︷ ︸
1

,

= ∑
x′

fxk(x
′,x;θxk)∑

vt′k
x

fk(v
t′k′
x ,vt′k

x′ ;θk)α(v
t′k
x′ ) . (29)

Finally, the three equations (27), (28), and (29) define a very efficient tightly coupled scale-time
forward filter for visual motion estimation. It realizes a complete probabilistic recurrent esti-
mation of a set of flow fields Vt,1:K with different resolutions k swept along the time dimension
t. It follows the principle that the longer you observe a scene and the finer the resolution of
the data is the more accurate the flow can be estimated.
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will remain factored. Similar to BP in a Markov random field, we assume independency for
all neighboring nodes in the Markov blanket. This means the belief over Vtk and Vtk′ at time
t is assumed to be factored which implies that also the belief over Vt′k and Vtk′ factorizes.

P(Vt′k,Vtk′ |Y1:t′ ,1:k′ \ Yt′k′ ) = P(Vt′k|Y1:t′ ,1:k)P(Vtk′ |Y1:t,1:k′ ) = ∏
x

α(vt′k
x )α(vtk′

x ) , (25)

where we used \ as the notation for excluding Yt′k′ from the set of measurements Y1:t′ ,1:k′ .
The two-dimensional forward filter propagates the belief over Vt′k and Vtk′ from (25) via
multiplying with the scale-time transition (13) and marginalizing over Vt′k and Vtk′ . The
result is multiplied with the new observation likelihood (12) and normalized by P(Yt′k′ ) to
get the updated belief

P(vt′k′
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As can be seen, the complete scale-time forward filter can now be defined by the computation
of updated beliefs α as the product of incoming messages,

α(vtk
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Inserting the proposed class of temporal transitions (16) into (26) leads to the following tem-
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Note that the summation ∑Vtk′ is summing over all possible flow fields, i.e. ∑Vtk′ repre-
sents Xk summations ∑vtk′
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· · · over each local flow field vector. We separated these

into a summation ∑vtk′
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other flow field vectors at x �= x′. Then, we use the equivalence ∑Vtk′ \vtk′
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Algorithm 1 Scale-Time Filter

Initialize the priors α(v0,1:K
x )

for t′ = 1 to T do
for k′ = 1 to K do

for x = 1 to Xk′ do

Compute the messages

mY→v(vt′k′
x )

mt→t′ (vt′k′
x ) = ∑

x′
fxt(x′,x − vt′k′

x ;θxt)∑vtk′
x

ft(vt′k′
x ,vtk′

x′ ;θt)α(vtk′
x′ )

mk→k′ (vt′k′
x ) = ∑

x′
fxk(x′,x;θxk)∑vt′k

x
fk(vt′k′

x ,vt′k
x′ ;θk)α(vt′k

x′ )

Update the beliefs

α(vt′k′
x ) ∝ mY→v(vt′k′

x ) mt→t′ (vt′k′
x ) mk→k′ (vt′k′

x )

end for
end for

end for

∏z �=x′ ∑vtk′
z

α(vtk′
z ) = 1. Similarly, we arrive at the scale message if we insert the scale tran-

sition (19) into (26)

mk→k′ (v
t′k′
x ) = ∑

Vt′k

φk(v
t′k′
x ,Vt′k)∏

x
α(vt′k

x ) ,

= ∑
Vt′k

∑
x′

fxk(x
′,x;θxk) fk(v

t′k′
x ,vt′k

x′ ;θk)∏
x

α(vt′k
x ) ,

= ∑
vt′k

x

∑
x′

fxk(x
′,x;θxk) fk(v

t′k′
x ,vt′k

x′ ;θk)α(v
t′k
x′ ) ∑

Vt′k

\vt′k
x

∏
z �=x′

α(vt′k
z )

︸ ︷︷ ︸
1

,

= ∑
x′

fxk(x
′,x;θxk)∑

vt′k
x

fk(v
t′k′
x ,vt′k

x′ ;θk)α(v
t′k
x′ ) . (29)

Finally, the three equations (27), (28), and (29) define a very efficient tightly coupled scale-time
forward filter for visual motion estimation. It realizes a complete probabilistic recurrent esti-
mation of a set of flow fields Vt,1:K with different resolutions k swept along the time dimension
t. It follows the principle that the longer you observe a scene and the finer the resolution of
the data is the more accurate the flow can be estimated.
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5. Filter realisations

The pseudo-code, Algorithm 1, shows the very compact form of the derived scale-time filter
suitable for an algorithmic implementation. What remains to be done, is the specification of
the observation likelihood (12) and the potentials of the transition probability (16) and (19).
Without loss of generalization the derivation for the filter assumes discrete state variables
which is reflected in using summations ∑ for marginalization. If continuous state variables
are given the summations ∑ simply have to be replaced by integrals

∫
. Everything else keeps

being the same. To show the applicability of the framework, we derive two realizations: One
for continuous Gaussian and one for discrete grid-based observation likelihoods as well as
Mixture of Gaussians and Mixture of Student’s-t-distributions transitions. Both realizations
have already been published at the International Conference on Machine Learning and Ap-
plications Willert et al. (2007; 2008). Here, we summarize the essentials of the modelling in
relation to the general filter framework. For optical flow estimation results, discussions on the
parameters, and benchmark tests we refer to the published material.

5.1 The Gaussian realisation
We define the observation likelihood and the transitions in such a way that we are left with a
purely Gaussian belief representation. This results in a filter similar to an extended Kalman
Filter only propagating means and covariances along scale and time.

5.1.1 Gaussian observation likelihood
We follow a similar argumentation as Simoncelli et al. (1991) to obtain the �(vtk

x )-factors (12) of
the observation likelihood. However, our likelihood results from a generative model assum-
ing that a scalar field patch of temporal derivatives Itk

t,x ∈RXk×1 centered around x is generated

by the velocity vtk
x ∈ R2×1 at position x and the gradient field patch (∇Itk

x )T ∈ RXk×2 centered
around the same position x.
While introducing this model based on patches around position x instead of only the pixel at
position x itself we imply that the optical flow is locally constant in a sense similar to the
Lucas-Kanade constraint Lukas & Kanade (1981). Additionally, we assume i.i.d. additive
Gaussian noise st, Sv on the temporal derivatives and the flow field, respectively.

�(vtk
x ) = N (−Itk

t,x|(∇Itk
x )Tvtk

x ,Σtk
�,x) , (30)

Σtk
�,x =




. . . . . . 0
... σtk

�,xx′
...

0 . . .
. . .




, (31)

σtk
�,xx′ =

(∇Itk
x′ )

TSv∇Itk
x′ + st

f�(x′,x, t,k)
. (32)

In notation (30), the patches can be regarded as vectors and the covariance matrix Σtk
�,x is a

diagonal with entries σtk
�,xx′ that depend on the position x′ relative to the center x, the time t, the

scale k, the flow field covariance Sv and the variance on the temporal derivatives st. Here, f�
takes into account the spatial uncertainty of the velocity measurement and can implement any
kind of spatial weighting, such as a binomial blurring filter proposed in Simoncelli (1999) or an

anisotropic and inhomogenous Gaussian weighting f� = N (x′ |x,Σtk
I,x) which is investigated

in Willert et al. (2008).
In contrast to Simoncelli (1999), we introduced time t as an additional dimension and derived
a more compact notation by putting the spatial weighted averaging directly into the likeli-
hood formulation defining multivariate Gaussian distributions for vectors that describe image
patches centered around image locations. Allowing for uncertainties Σtk

�,x that are adaptive in
location x, scale k and time t we are able to tune the local motion measurements dynamically
e.g. dependent on the underlying structure of the intensity patterns.

5.1.2 Mixture of Gaussians transition
For the temporal contraint (14) we now chose a Gaussian

vt′k′
x ∼N (vt′k′

x |vtk′
x′ ,σt) , (33)

which says that the change in time of the flow field is white with undirectional transition
noise between Vtk′ and Vt′k′ . For the spatial interaction (15) an inhomogeneous anisotropic
Gaussian is assumed

x′ ∼ N (x′ |x − vt′k′
x ,Σtk

t,x) . (34)

to be able to steer the orientation and to adapt the strength of the uncertainty in spatial iden-
tification Σtk

t,x between corresponding positions in time. Combining both factors (33) and (34)
and integrating x′ we get a Mixture of Gaussians (MoG) as the first pairwise potential (16)

φt(vt′k′
x ,Vtk′ ) = ∑

x′
N (x′ |x − vt′k′

x ,Σtk
t,x)N (vt′k′

x |vtk′
x′ ,σt) , (35)

with the Gaussian spatial coherence constraint being the mixing coefficients. Equivalent to
(33) for the scale transition factor (19) we chose a Gaussian

vt′k′
x ∼N (vt′k′

x |vt′k
x′′ ,σk) , (36)

assuming white transition noise σk. The influence of neighboring velocity states from coarser
scale is also modelled as an adaptive Gaussian kernel similar to (34)

x′′ ∼ N (x′′ |x,Σtk
k,x) . (37)

Again, combining both factors (36) and (37) and integrating x′′ we get a MoG as the second
pairwise potential

φk(v
t′k′
x ,Vt′k) = ∑

x′′
N (x′′ |x,Σtk

k,x)N (vt′k′
x |vt′k

x′′ ,σk) , (38)

that imposes a spatial smoothness constraint on the flow field via adaptive spatial weighting
of motion estimations from coarser scale. The combination of both potentials (16) and (19)
results in the complete conditional flow field transition probability as given in (13).
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The pseudo-code, Algorithm 1, shows the very compact form of the derived scale-time filter
suitable for an algorithmic implementation. What remains to be done, is the specification of
the observation likelihood (12) and the potentials of the transition probability (16) and (19).
Without loss of generalization the derivation for the filter assumes discrete state variables
which is reflected in using summations ∑ for marginalization. If continuous state variables
are given the summations ∑ simply have to be replaced by integrals

∫
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being the same. To show the applicability of the framework, we derive two realizations: One
for continuous Gaussian and one for discrete grid-based observation likelihoods as well as
Mixture of Gaussians and Mixture of Student’s-t-distributions transitions. Both realizations
have already been published at the International Conference on Machine Learning and Ap-
plications Willert et al. (2007; 2008). Here, we summarize the essentials of the modelling in
relation to the general filter framework. For optical flow estimation results, discussions on the
parameters, and benchmark tests we refer to the published material.

5.1 The Gaussian realisation
We define the observation likelihood and the transitions in such a way that we are left with a
purely Gaussian belief representation. This results in a filter similar to an extended Kalman
Filter only propagating means and covariances along scale and time.

5.1.1 Gaussian observation likelihood
We follow a similar argumentation as Simoncelli et al. (1991) to obtain the �(vtk

x )-factors (12) of
the observation likelihood. However, our likelihood results from a generative model assum-
ing that a scalar field patch of temporal derivatives Itk

t,x ∈RXk×1 centered around x is generated

by the velocity vtk
x ∈ R2×1 at position x and the gradient field patch (∇Itk

x )T ∈ RXk×2 centered
around the same position x.
While introducing this model based on patches around position x instead of only the pixel at
position x itself we imply that the optical flow is locally constant in a sense similar to the
Lucas-Kanade constraint Lukas & Kanade (1981). Additionally, we assume i.i.d. additive
Gaussian noise st, Sv on the temporal derivatives and the flow field, respectively.

�(vtk
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In notation (30), the patches can be regarded as vectors and the covariance matrix Σtk
�,x is a

diagonal with entries σtk
�,xx′ that depend on the position x′ relative to the center x, the time t, the

scale k, the flow field covariance Sv and the variance on the temporal derivatives st. Here, f�
takes into account the spatial uncertainty of the velocity measurement and can implement any
kind of spatial weighting, such as a binomial blurring filter proposed in Simoncelli (1999) or an

anisotropic and inhomogenous Gaussian weighting f� = N (x′ |x,Σtk
I,x) which is investigated

in Willert et al. (2008).
In contrast to Simoncelli (1999), we introduced time t as an additional dimension and derived
a more compact notation by putting the spatial weighted averaging directly into the likeli-
hood formulation defining multivariate Gaussian distributions for vectors that describe image
patches centered around image locations. Allowing for uncertainties Σtk

�,x that are adaptive in
location x, scale k and time t we are able to tune the local motion measurements dynamically
e.g. dependent on the underlying structure of the intensity patterns.

5.1.2 Mixture of Gaussians transition
For the temporal contraint (14) we now chose a Gaussian

vt′k′
x ∼N (vt′k′

x |vtk′
x′ ,σt) , (33)

which says that the change in time of the flow field is white with undirectional transition
noise between Vtk′ and Vt′k′ . For the spatial interaction (15) an inhomogeneous anisotropic
Gaussian is assumed

x′ ∼ N (x′ |x − vt′k′
x ,Σtk

t,x) . (34)

to be able to steer the orientation and to adapt the strength of the uncertainty in spatial iden-
tification Σtk

t,x between corresponding positions in time. Combining both factors (33) and (34)
and integrating x′ we get a Mixture of Gaussians (MoG) as the first pairwise potential (16)

φt(vt′k′
x ,Vtk′ ) = ∑

x′
N (x′ |x − vt′k′

x ,Σtk
t,x)N (vt′k′

x |vtk′
x′ ,σt) , (35)

with the Gaussian spatial coherence constraint being the mixing coefficients. Equivalent to
(33) for the scale transition factor (19) we chose a Gaussian

vt′k′
x ∼N (vt′k′

x |vt′k
x′′ ,σk) , (36)

assuming white transition noise σk. The influence of neighboring velocity states from coarser
scale is also modelled as an adaptive Gaussian kernel similar to (34)

x′′ ∼ N (x′′ |x,Σtk
k,x) . (37)

Again, combining both factors (36) and (37) and integrating x′′ we get a MoG as the second
pairwise potential

φk(v
t′k′
x ,Vt′k) = ∑

x′′
N (x′′ |x,Σtk

k,x)N (vt′k′
x |vt′k

x′′ ,σk) , (38)

that imposes a spatial smoothness constraint on the flow field via adaptive spatial weighting
of motion estimations from coarser scale. The combination of both potentials (16) and (19)
results in the complete conditional flow field transition probability as given in (13).
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5.1.3 Approximate inference
To arrive at a Gaussian belief we introduce a last approximative restriction. We want every
factor of the posterior probability (27) to be Gaussian distributed

α(vtk
x ) ∝ mY→v(vtk

x ) mt→t′ (vtk
x ) mk→k′ (v

tk
x ) :≈N (vtk

x |µµµtk
x ,Σtk

x ) . (39)

We fulfill this constraint by making all single messages Gaussian distributed. This already
holds for the observation likelihood mY→v(vtk

x ). A more accurate technique (following as-
sumed density filtering) would be to first compute the new belief α exactly as a MoG and then
collapse it to a single Gaussian. However, this would mean extra costs. Here, we do not inves-
tigate the tradeoff between computational cost and accuracy for different collapsing methods.
Inserting Gaussian distributed beliefs α into the propagation equations (28, 29) leads to two
different MoGs for the resulting messages

mt→t′ (vt′k′
x ) = ∑

x′
p̂t′k′

x′ N (vt′k′
x |µ̂µµt′k′

x′ , Σ̂t′k′
x′ ) ≈N (vt′k′

x |ωωωt′k′
x ,Ωt′k′

x ) , (40)

with

p̂t′k′
x′ = N (x − x′ |µµµtk′

x′ , Σ̌tk′
x′ ) , (41)

µ̂µµt′k′
x′ = (σt + Σtk′

x′ )Λ̌
tk′
x′ (x − x′) + Σtk

t,xΛ̌tk′
x′ µµµtk′

x′ , (42)

Σ̂t′k′
x′ = Σtk

t,xΛ̌tk′
x′ (σt + Σtk′

x′ ) , (43)

Σ̌tk′
x′ =

[
Λ̌tk′

x′
]−1

= σt + Σtk
t,x + Σtk′

x′ ,

and
mk→k′ (v

t′k′
x ) = ∑

x′′
pt′k′

x′′ N (vt′k′
x |µµµt′k

x′′ ,Σ
t′k′
x′′ ) ≈N (vt′k′

x |πππt′k′
x ,Πt′k′

x ) , (44)

with
pt′k′

x′′ =N (x′′ |x,Σtk
k,x) , Σ

t′k′
x′′ = σk + Σt′k

x′′ . (45)

In order to satisfy the Gaussian constraint formulated in (39) the MoG’s are collapsed into sin-
gle Gaussians (40, 44) again. This is derived by minimizing the Kullback-Leibler Divergence
between the given MoG’s and the assumed Gaussians for the means ωωωtk

x ,πππtk
x and the covari-

ances Ωtk
x ,Πtk

x which results in closed-form solutions for these parameters. The final predictive
belief α(vtk

x ) follows from the product of these Gaussians

α(vtk
x ) = �(vtk

x ) N (vtk
x |µ̃µµtk

x , Σ̃tk
x ) , (46)

Σ̃tk
x = Πtk

x

[
Πtk

x + Ωtk
x

]−1
Ωtk

x , (47)

µ̃µµtk
x = Ωtk

x

[
Πtk

x + Ωtk
x

]−1
πππtk

x + Πtk
x

[
Πtk

x + Ωtk
x

]−1
ωωωtk

x . (48)

By applying the approximation steps (39, 40) and (44) we guarantee the posterior (27) to be
Gaussian which allows for Kalman-filter like update equations since the observation is de-
fined to factorize into Gaussian factors (30). The final recurrent motion estimation is given

by

α(vtk
x ) = N (vtk

x |µµµtk
x ,Σtk

x ) (49)

= N (−Itk
t,x|(∇Itk

x )Tvtk
x ,Σtk

�,x)N (vtk
x |µ̃µµtk

x , Σ̃tk
x ) , (50)

Σtk
x =

[
Λ̃tk

x +∇Itk
x Λtk

�,x(∇Itk
x )T

]−1
, (51)

µµµtk
x = µ̃µµtk

x − Σtk
x ∇Itk

x Λtk
�,xĨtk

t,x . (52)

For reasons explained in Simoncelli (1999) the innovations process is approximated as the
following

Ĩtk
t,x ≈ ∂/∂tT

(
Itk

x , µ̃µµtk
x

)
, (53)

with T applying a backward warp plus bilinear interpolation on the image Itk
x using the pre-

dicted velocities µ̃µµtk
x from (48). We end up with a Gaussian scale-time filter which is, in com-

parison to existent filtering approaches Elad & Feuer (1998), Simoncelli (1999), Singh (1991),
not a Kalman Filter realization but related to an extended Kalman Filter since the result of the
nonlinear transitions is linearized after each message pass with the collpase of each MoG to a
single Gaussian.

5.2 The grid-based realisation
A grid-based filter allows only a discrete set of state variables but is otherwise not restricted
to any particular form of distribution. Here, we neglect the scale dimension but show how
past and future observables can be processed offline via a Two-Filter.

5.2.1 Observation likelihood
Now, we define the observation likelihood P(Yt|Vt) by assuming that the likelihood factor
�(Yt|vt

x) of a local velocity vt
x should be related to finding the same or similar image patch

centered around x at time t′ that was present at time t but centered around x − vt
x. More

rigorously, let S(x,µµµ,Σ,ν) be the Student’s t-distribution and N (x,µµµ,Σ) = limν→∞ S(x,µµµ,Σ,ν)
be the normal distribution of a variable x with mean µµµ, covariance matrix Σ and the degrees
of freedom ν. In the following the covariance is chosen to be isotropic Σ = σ2E (with identity
matrix E). We define

�(Yt+1|vt+1
x ) = ∑

x′
N (x′ |x,�I)S(It′

x′ |I
t+1
x′−vt+1

x
,σI ,νI) = ∑

x′
N (x′ |x − vt

x,�I)S(It′
x′+vt+1

x
|It+1

x′ ,σI ,νI) .

(54)
Here, N (x′ |x,�I) implements a Gaussian weighting of locality centered around x for It+1 and
around x − vt

x for It. The parameter �I defines the spatial range of this image patch and σI
the grey value variance. The univariate Student’s t-distribution S(It+1

x′ , It
x′−vt

x
,σI ,νI) realizes

a robust behaviour against large gray-value differences within image patches, which means
these gray-values are treated as outliers and are much less significant for the distribution.

5.2.2 Mixture of Student’s t transition
Similarly to equation (54), we define the transition probability P(vt+1

x |Vt) by assuming that
the flow field transforms according to itself like defined in 16 and further specified as

P(vt+1
x |Vt) ∝ N (x′ |x − vt+1

x ,�V)S(vt+1
x |vt

x′ ,σV ,νV) . (55)
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different MoGs for the resulting messages

mt→t′ (vt′k′
x ) = ∑

x′
p̂t′k′

x′ N (vt′k′
x |µ̂µµt′k′

x′ , Σ̂t′k′
x′ ) ≈N (vt′k′

x |ωωωt′k′
x ,Ωt′k′

x ) , (40)

with

p̂t′k′
x′ = N (x − x′ |µµµtk′

x′ , Σ̌tk′
x′ ) , (41)

µ̂µµt′k′
x′ = (σt + Σtk′

x′ )Λ̌
tk′
x′ (x − x′) + Σtk

t,xΛ̌tk′
x′ µµµtk′

x′ , (42)

Σ̂t′k′
x′ = Σtk

t,xΛ̌tk′
x′ (σt + Σtk′

x′ ) , (43)

Σ̌tk′
x′ =

[
Λ̌tk′

x′
]−1

= σt + Σtk
t,x + Σtk′

x′ ,

and
mk→k′ (v

t′k′
x ) = ∑

x′′
pt′k′

x′′ N (vt′k′
x |µµµt′k

x′′ ,Σ
t′k′
x′′ ) ≈N (vt′k′

x |πππt′k′
x ,Πt′k′

x ) , (44)

with
pt′k′

x′′ =N (x′′ |x,Σtk
k,x) , Σ

t′k′
x′′ = σk + Σt′k

x′′ . (45)
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�,xĨtk

t,x . (52)

For reasons explained in Simoncelli (1999) the innovations process is approximated as the
following
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with T applying a backward warp plus bilinear interpolation on the image Itk
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dicted velocities µ̃µµtk
x from (48). We end up with a Gaussian scale-time filter which is, in com-

parison to existent filtering approaches Elad & Feuer (1998), Simoncelli (1999), Singh (1991),
not a Kalman Filter realization but related to an extended Kalman Filter since the result of the
nonlinear transitions is linearized after each message pass with the collpase of each MoG to a
single Gaussian.

5.2 The grid-based realisation
A grid-based filter allows only a discrete set of state variables but is otherwise not restricted
to any particular form of distribution. Here, we neglect the scale dimension but show how
past and future observables can be processed offline via a Two-Filter.

5.2.1 Observation likelihood
Now, we define the observation likelihood P(Yt|Vt) by assuming that the likelihood factor
�(Yt|vt

x) of a local velocity vt
x should be related to finding the same or similar image patch

centered around x at time t′ that was present at time t but centered around x − vt
x. More

rigorously, let S(x,µµµ,Σ,ν) be the Student’s t-distribution and N (x,µµµ,Σ) = limν→∞ S(x,µµµ,Σ,ν)
be the normal distribution of a variable x with mean µµµ, covariance matrix Σ and the degrees
of freedom ν. In the following the covariance is chosen to be isotropic Σ = σ2E (with identity
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Here, N (x′ |x,�I) implements a Gaussian weighting of locality centered around x for It+1 and
around x − vt

x for It. The parameter �I defines the spatial range of this image patch and σI
the grey value variance. The univariate Student’s t-distribution S(It+1

x′ , It
x′−vt

x
,σI ,νI) realizes

a robust behaviour against large gray-value differences within image patches, which means
these gray-values are treated as outliers and are much less significant for the distribution.

5.2.2 Mixture of Student’s t transition
Similarly to equation (54), we define the transition probability P(vt+1

x |Vt) by assuming that
the flow field transforms according to itself like defined in 16 and further specified as

P(vt+1
x |Vt) ∝ N (x′ |x − vt+1

x ,�V)S(vt+1
x |vt

x′ ,σV ,νV) . (55)
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Using a heavy tailed Student’s t distribution, we assume robust spatiotemporal coherence
because evaluations on first derivative optical flow statistics Roth & Black (2005) and on
prior distributions that allow to imitate human speed discrimination tasks Stocker & Si-
moncelli (2006) provide strong indication that they resemble such heavy tailed Student’s t-
distributions. The parameter �V defines the spatial range of a flow-field patch, so we com-
pare velocity vectors within flow-field patches at different times t and t + 1. We introduced
new parameters �V and σV for the uncertainty in spatial identification between two images
and the transition noise between Vt and vt+1

x , respectively. The robustness against outliers is
controlled by νV , with smaller/larger νV decreasing/increasing the influence of incoherently
moving pixels within the observed spatial range �V . With νV → ∞ the uncertainty for the ve-
locity gets Gaussian distributed and (55) equals the transition probability formulated in Burgi
et al. (2000) which expresses the belief that pixels are, on average, moving along a straight line
with constant velocity. Therefore, the proposed spatiotemporal transition model 55 can be seen
as a generalization of the transition model proposed by Burgi et al. (2000).

5.2.3 Two-Filter inference
Like beforehand, for inference we need to propagate beliefs over the flow field Vt. Storing
a distribution over a whole flow field Vt is infeasible if one does not make factorization as-
sumptions. The factored observation likelihoods and transition probabilities we introduced
ensure that the forward propagated beliefs will remain factored. However, the standard back-
ward messages do not exactly factor under this model. Hence we follow a two-filter approach
Kitagawa (1994) where the ”backward filter” is strictly symmetric to the forward filter.
Following the derivation for the temporal belief propagation 28 and specifying the transition
probability as in equation 55 the forward filter reads

α(vt+1
x ) ∝ �(Yt+1|vt+1

x ) α∗(vt+1
x ) (56)

α∗(vt+1
x ) ∝ ∑

x′
N (x′ |x − vt+1

x ,�V)∑
vt

x′

S(vt+1
x |vt

x′ ,σV ,νV) α(vt
x′ ) . (57)

If we have access to a batch of data (or a recent window of data) we can compute smoothed
posteriors as a basis for an EM-algorithm and train the free parameters. In our two-filter
approach we derive the backward filter as a mirrored version of the forward filter, but using

P(vt
x|Vt+1) ∝ ∑

x′
N (x′ |x + vt

x,�V) S(vt
x,vt+1

x′ |σV ,νV) (58)

instead of (55). This equation is motivated in exactly the same way as we motivated (55):
we assume that vt

x ∼ S(vt+1
x′ ,σV ,νV) for a corresponding position x′ in the subsequent image,

and that x′ ∼ N (x − vt
x,�V) is itself defined by vt

x. However, note that using this symmetry
of argumentation is actually an approximation to our model because applying Bayes rule on
(55) would lead to a different, non-factored P(Vt|Vt+1). What we gain by the approximation
P(Vt|Vt+1)≈ ∏x P(vt

x|Vt+1) are factored β’s which are feasible to maintain computationally.
The backward filter equations read

β∗(vt
x) ∝ �(Yt|vt

x) β(vt
x) , (59)

β(vt
x) ∝ ∑

x′
N (x′ |x + vt

x,�v) ∑
vt+1

x′

S(vt
x|vt+1

x′ ,σV ,νV)β∗(vt+1
x′ ) . (60)

To derive the smoothed posterior we need to combine the forward and backward filters. In
the two-filter approach this reads

γ(vt
x) = P(vt

x|Y1:T) =
P(Yt+1:T |vt

x) P(vt
x|Y1:t)

P(Y1:T)
(61)

=
P(vt

x|Yt+1:T)P(Yt+1:T)P(vt
x|Y1:t)

P(vt
x)P(Y1:T)

∝ α(vt
x) β(vt

x)
1

P(vt
x)

, (62)

with P(Yt+1:T) and P(Y1:T) being constant. If both the forward and backward filters are ini-
tialized with α(v0

x) = β(vT
x ) = P(vx) we can identify the unconditioned distribution P(vt

x)
with the prior P(vx). For details on the standard forward-backward-algorithm we refer to
Bishop (2006).

6. Summary

A reliable and robust motion estimate is an important low-level processing unit that has the
potential to bootstrap a number of visual perception tasks to be solved by a cognitive vision
system. Since the estimation of motion information has to rely on highly uncertain visual
information a probabilistic treatment of the problem is proposed. Based on three basic ap-
proaches to solve motion ambiguities, the derivation of a probabilistic filter is given that com-
bines all these three approaches into one recurrent framework. The derivation comprises an
efficient approximate inference algorithm based on belief propagation applied on a directed
graphical model with a graph topology suitable for intertwining belief propagation along two
dimensions, scale and time, simultaneously. Introducing some factorisation assumptions and
a special class of transition probabilities results in a very compact and computationally effi-
cient algorithm. For this algorithm two implementations are presented. The first one realizes a
purely factored Gaussian belief propagation and the second one the propagation of a factored
non-parametric discrete distribution. The presented framework provides a flexible basis for
the realization of user specific motion estimation algorithms with the focus on online appli-
cations. It also serves as an exploration platform to investigate in adaptation mechanisms
and online learning strategies for example to improve the optical flow estimation accuracy or
increase the robustness for highly dynamic scenes.
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prior distributions that allow to imitate human speed discrimination tasks Stocker & Si-
moncelli (2006) provide strong indication that they resemble such heavy tailed Student’s t-
distributions. The parameter �V defines the spatial range of a flow-field patch, so we com-
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new parameters �V and σV for the uncertainty in spatial identification between two images
and the transition noise between Vt and vt+1
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controlled by νV , with smaller/larger νV decreasing/increasing the influence of incoherently
moving pixels within the observed spatial range �V . With νV → ∞ the uncertainty for the ve-
locity gets Gaussian distributed and (55) equals the transition probability formulated in Burgi
et al. (2000) which expresses the belief that pixels are, on average, moving along a straight line
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Like beforehand, for inference we need to propagate beliefs over the flow field Vt. Storing
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sumptions. The factored observation likelihoods and transition probabilities we introduced
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x) = β(vT
x ) = P(vx) we can identify the unconditioned distribution P(vt
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with the prior P(vx). For details on the standard forward-backward-algorithm we refer to
Bishop (2006).

6. Summary

A reliable and robust motion estimate is an important low-level processing unit that has the
potential to bootstrap a number of visual perception tasks to be solved by a cognitive vision
system. Since the estimation of motion information has to rely on highly uncertain visual
information a probabilistic treatment of the problem is proposed. Based on three basic ap-
proaches to solve motion ambiguities, the derivation of a probabilistic filter is given that com-
bines all these three approaches into one recurrent framework. The derivation comprises an
efficient approximate inference algorithm based on belief propagation applied on a directed
graphical model with a graph topology suitable for intertwining belief propagation along two
dimensions, scale and time, simultaneously. Introducing some factorisation assumptions and
a special class of transition probabilities results in a very compact and computationally effi-
cient algorithm. For this algorithm two implementations are presented. The first one realizes a
purely factored Gaussian belief propagation and the second one the propagation of a factored
non-parametric discrete distribution. The presented framework provides a flexible basis for
the realization of user specific motion estimation algorithms with the focus on online appli-
cations. It also serves as an exploration platform to investigate in adaptation mechanisms
and online learning strategies for example to improve the optical flow estimation accuracy or
increase the robustness for highly dynamic scenes.
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1. Introduction 
 

From the cognitive point of view, knowing concepts is a fundamental ability when human 
being understands the world. Most concepts can be lexicalized via words in a natural 
language and are called Lexical Concepts. Currently, there is much interest in knowledge 
acquisition from text automatically and in which concept extraction, verification, and 
relationship discovery are the crucial parts (Cao et al., 2002). There are a large range of other 
applications which can also be benefit from concept acquisition including information 
retrieval, text classification, and Web searching, etc. (Ramirez & Mattmann, 2004; Zhang et al., 
2004; Acquemin & Bourigault, 2000) 
Most related efforts in concept mining are centralized in term recognition. The common used 
approaches are mainly based on linguistic rules (Chen et al., 2003), statistics (Zheng & Lu, 
2005; Agirre et al., 2004) or a combination of both (Du et al., 2005; Velardi et al., 2001). In our 
research, we realize that concepts are not just terms. Terms are domain-specific while 
concepts are general-purpose. Furthermore, terms are just restricted to several kinds of 
concepts such as named entities. So even we can benefit a lot from term recognition we 
cannot use it to learn concepts directly. 
Other relevant works in concept mining are focused on concepts extraction from documents. 
Gelfand has developed a method based on the Semantic Relation Graph to extract concepts 
from a whole document (Gelfand et al., 1998). Nakata has described a method to index 
important concepts described in a collection of documents belonging to a group for sharing 
them (Nakata et al., 1998). A major difference between their works and ours is that we want 
to learn huge amount of concepts from a large-scale raw corpus efficiently rather than from 
one or several documents. So the analysis of documents will lead to a very higher time 
complexity and does not work for our purpose. 
There are many types relationships between lexical concepts such as antonymy, meronomy 
and hyponymy, among which the study of hyponymy relationship has attracted many effort 
of research because of its wide use. There are three mainstream approaches—the Symbolic 
approach, the Statistical approach and the Hierarchical approach—to discovery general 
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hyponymy relations automatically or semi automatically (Du & Li, 2006). The Symbolic 
approach, depending on lexicon-syntactic patterns, is currently the most popular technique 
(Hearst, 1992; Liu et al., 2005; Liu et al., 2006; Ando et al., 2003). Hearst (Hearst, 1992) was one 
of the early researchers to extract hyponymy relations from Grolier’s Encyclopedia by 
matching 4 given lexicon-syntactic patterns, and more importantly, she discussed about 
extracting lexicon-syntactic patterns by existing hyponymy relations. Liu (Liu et al., 2005; Liu 
et al., 2006) used the “isa” pattern to extract Chinese hyponymy relations from unstructured 
Web corpus, and have been proven to have a promising performance. Zhang (Zhang et al., 
2007) proposed a method to automatically extract hyponymy from Chinese domain-specific 
free text by three symbolic learning methods. The statistical approach usually adopts 
clustering and associative rules. Zelenko et al. (Zelenko et al., 2003) introduced an 
application of kernel methods to extract two certain kinds of hyponymy relations with 
promising results, combining Support Vector Machine and Voted Perception learning 
algorithms. The hierarchical approach is trying to build a hierarchical structure of hyponymy 
relations. Caraballo (Caraballo, 1999) built a hypernymy hierarchy of nouns via a bottom-up 
hierarchical clustering technique, which was akin to manually constructed hierarchy in 
WordNet. 
In this paper, we use both linguistic rules and statistical features to learn lexical concepts 
from raw texts. Firstly, we extract a mass of concept candidates from text using 
lexico-patterns, and confirm a part of them to be concepts according to their matched 
patterns. For the other candidates we induce an Inner-Constructive Model (CICM) of words 
which reveal the rules when several words construct concepts through four aspects: (1) parts 
of speech, (2) syllables, (3) senses, and (4) attributes. Once the large scale concept set is built 
based on the CICM model, we developed a framework to discover inner relationships within 
concepts. A lexical hyponym acquisition is proposed based on this framework. 

 
2. Extracting Concepts from Text using Lexico-Patterns 
 

In this research, our goal is to extract huge amount of domain-independent concept 
candidates. A possible solution is to process the text by Chinese NLU systems firstly and 
then identity some certain components of a sentence to be concepts. But this method is 
limited dut to the poor performance of the existing Chinese NLU systems, which still against 
many challenge at present for Chinese (Zhang & Hao, 2005). So we choose another solution 
based on lexico-patterns. 

 
2.1 The Lexico-Patterns of Lexical Concepts 
Enlightened Hearst's work (Hearst, 1992), we adopt lexico-patterns to learning lexical 
concepts from texts. But first design a lot of lexico-patterns patterns manually, some of which 
are shown in Table 
 
 
 
 
 
 
 

ID Lexical Patterns 
1 <?C1><是><一|><个|种|><?C2> 
2 <?C1><、><?C2><或者|或是|以及|或|等|及|和|与><其他|其它|其

余> 
3 <?C1><、><?C2><等等|等><?C3> 
4 <?C1><如|象|像><?C2><或者|或是|或|及|和|与|、><?C3> 
5 <?C1><、><?C2><是|为><?C3> 
6 <?C1><、><?C2><各|每|之|这><种|类|些|样|流><?C3> 
7 <?C1><或者|或是|或|等|及|和|与><其他|其它|其余><?C2> 
8 <?C1><或者|或是|或|及|和|与><?C2><等等|等><?C3> 
9 <?C1><中|里|内|><含|含有|包含|包括><?C2> 
10 <?C1>由<?C2><组成|构成> 

Table 1. The Lexico-Patterns for Extracting Concepts from Text 
 
Here is an example to show how to extract concepts from text using lexico-patterns: 
 
Example 1. Lexico-Pattern_No_1{ 
Pattern: < ?C1> <是><一 | > < 个|种> < ?C2> 
Restrict Rules: 
not_contain(<?C2>,<! 标
点> )^lengh_greater_than(<?C1>,1)^lengh\_greater\_than(<?C2>,1)^ 
lengh_less_than(<?C1>,80)^lengh_less_than(<?C2>,70)^not\_end\_with(<?C1>,<这|那>)^ 

not_end_with(<?C2>,<的|而已|例子|罢了>)^ 

not_begin_with(<?C2>,<这|的|它|他|我|那|你|但>)^ 

not_contain(<?C2>,<这些|那些|他们|她们|你们|我们|他|它|她|你|谁>)} 
 
Sample sentences and the concepts extracted: 
 
(1) 地球是一个行星，地球会爆炸吗？(The earth is a planet, will it blast?) →<?C1>=地球(The 
earch); <?C2>=行星(a planet) 
(2) 很久很久以前地球是一个充满生机的星球.(Long long ago the Earth is a planet full of 

vitality.) →<?C1>=很久很久以前地球(Long long ago the Earth); <?C2>=充满生机的星球(a 
planet full of vitaligy) 
 
How to devise good patterns to get as much concepts as possible? We summarized the 
following criteria through experiments: 
(1) High accuracy criterion. Concepts distributing in sentences meet linguistics rules, so each 
pattern should reflect at least one of these rules properly. We believe that we should know 
linguistics well firstly if we want create to good patterns. 
(2) High coverage criterion. We want to get as much concepts as possible. Classifying all 
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vitality.) →<?C1>=很久很久以前地球(Long long ago the Earth); <?C2>=充满生机的星球(a 
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How to devise good patterns to get as much concepts as possible? We summarized the 
following criteria through experiments: 
(1) High accuracy criterion. Concepts distributing in sentences meet linguistics rules, so each 
pattern should reflect at least one of these rules properly. We believe that we should know 
linguistics well firstly if we want create to good patterns. 
(2) High coverage criterion. We want to get as much concepts as possible. Classifying all 
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concepts into three groups by their characteristics, (i.e. concepts which describe physical 
objects, concepts and the concepts which describe time) is a good methodology for designing 
good patterns to get more concepts. 

 
2.2 Confirming Concepts using Lexico-Patterns 
Obviously, not all the chunks we got in section 2.1 are concepts, such as <?C1>=很久很久以

前地球(Long long ago the Earth) in Example 1 above. In order to identify concepts from the 
candidates, we introduce a hypothesis, called Hypothesis 1. 
 
Hypothesis 1. A chunk ck extracted using lexico-patterns in section 2.1 is a concept if (1) {ck} 
has been matched by sufficient lexico-patterns, or (2) {ck} has been matched sufficient times. 
 
To testify our hypothesis, we randomly draw 10,000 concept candidates from all the chunks 
and verify them manually. The association between the possibility of a chunk to be a concept 
and its matched patterns is shown as Fig. 1: 
 

 
Fig. 1. Association between the lexico-patterns number / the times matched by all the 
patterns of chunks and their possibility of being concepts} 
 
The left chart indicates our hypothesis that the chunks which matched more patterns are 
more likely to be concepts and the right chart shows that the frequency of the chunk does 
work well to tell concepts from candidate chunks too. In our experiments, we take the 
number of patterns matchings to be 5 and threshold of matching frequency as 14, and single 
out about 1.22% concepts from all the candidate chunks with a precision rate of 98.5%. While 
we are satisfied with the accuracy, the recall rate is rather low. So in the next step, we 
develop CICMs to recognize more concepts from chunks. 

 
3. Learning Concepts using CICM 
 

The CICM is founded on an instinctive hypothesis:  
Hypothesis 2. Most lexical concepts obey certain inner constructive rules. 
That means, when some words form a concept, each word must play a certain role and has 
certain features. We develop the hypothesis enlightened mainly from the knowledge of 

linguistics (Lu et al., 1992) and the cognitive process of human beings creating lexical 
concepts (Laurance & Margolis, 1999). Some examples will be given to illuminate the 
Hypothesis 2 after present the definition of CICM. 

 
3.1 Definition of CICM 
According to Hypothesis 2, we can tell whether an unknown chunk is a concept or not by 
checking whether each word in it whether obeys the CICM. The problems are how to 
materialize these rules and how to get them. The POS models can reveal these rules using the 
parts of speech of words but is not precise enough and has many defections (Yu, 2006). To get 
better performance we probe into the structure of concepts more deeply and find that besides 
POS, we must ensure each word's more definite role through at least other three aspects. 
 
Definition 1. The word model W=< PS, SY, SE, AT> of a word w is a 4-tuple where (1) PS is 
all the parts of speech of w; (2) SY is the number of w's syllable; (3) SE is the senses of w in 
HowNet; and (4) AT is the attributes of w. 
 
The word models are integrated information entities to model words. The reason of choosing 
these four elements listed above will be clarified when we construct CICMs. 
 
Definition 2. Given a concept cpt=w1… wi-1 wi wi+1 …wn with n words, the C-Vector of the 
word wi towards cpt is a n-tuple: 
 

C-Vector(wi)=< i, W1,… ,Wi-1 ,Wi+1 ,…,Wn > (1) 
 
The C-Vector of a word stands for one constructive rule when it forms concepts by linking 
other words and i is its position in the concept. A word can have same C-Vectors towards 
many different concepts. The C-Vector is the basis of CICM. 
Definition 3. The Concept Inner-Constructive Models (CICMs) of a word w is a bag of 
C-Vectors, in which each C-Vector is produced by a set of concepts contain w. 
Essentially, CICMs of words represent the constructive rules when they construct concepts. 
In the four elements of word models, PS and SY embody the syntactical information which 
have significant roles when conforming concepts in Chinese (Lu et al., 1992) and are 
universal for all types of words. SE and AT reveal the semantic information of words and are 
also indispensably. HowNet is an elaborate semantic lexicon attracted many attentions in 
many related works (Dong & Dong, 2006). But there are still some words which are missing 
in it so we need to introduce attributes as a supplement. Attributes can tell the semantic 
differences at the quantative level or qualitative level between concepts. Tian has developed 
a practicable approach to acquire attributes from large-scale corpora (Tian, 2007). 
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ID C-Vectors Sample Concepts 
1 < 1, W(管理) > 生产 管理 
2 < 1, W(许可证) > 生产 许可证 
3 < 1,W(实习),W(报告)> 生产 实习 报告 
4 < 2,W(食品)> 食品 生产 
5 < 2,W(分布式)> 分布式 生产 
6 < 2,W(国民),W(总值)> 国民 生产 总值 
7 < 2,W(新疆),W(建设),W(兵团)> 新疆 生产 建设 兵团 
8 < 3,W(广东省),W(春耕)> 广东省 春耕 生产 
9 < 3,W(国家),W(安全),W(监督),W(管理局)> 国家 安全 生产 监督 管理局 
… … … 

Table 2. CICM of “生产” 
 
Note that we omit the details of each word vector for simplicity. Taking ``国民 生产 总值'' 
for example, the full C-Vector is: 
<  2, 
  <{n},2,{属性值,归属,国,人,国家},{有组成,有数量}>, 

  <{n},2,{数量,多少,实体},{有值域,是抽象概念}>> 

 
3.2 Learning CICMs 
Using CICMs as the inner constructive rules of concepts, our next problem is how to get 
these models. We use the confirmed concepts obtained in section 2.2 as a training set and 
learn CICMs hidden in them automatically. It is an instance learning process and the 
following procedure is implemented for this task: 
 
Algorithm 
CICMs Instance Learning Algorithm: 
(1) Initializing the resources including (1.1) A words dictionary in which each one has fully parts 
of speech; (1.2) The HowNet dictionary; and (1.3) An attributes base of words (Tian, 2007). 
(2) Constructing a model set MSet to accommodate all the words' models which is empty 
initially. 
(3) For each concept cpt in the training set, segment it and create each word's C-Vector(wi). 
Subsequently, if C-Vector(wi) ∈ MSet(wi), then just accumulate the frequency; otherwise add 
C-Vector(wi) to MSet(wi). 
(4) Removing the C-Vectors which have low frequency for each word's MSet. 
 
Based on experiments, we choose 10% as the threshold of the number of the concepts 
containing the word in the training set. We exclude the vectors which have low frequency, 
that is, if a C-Vector for a word is supported by just a few concepts, we look at it as an 
exception. 

4. Clustering Words for More Efficient Analogy 
 

Essentially, CICMs are models of instance analogy. We want to learn new concepts by 
``recalling'' the old ones just as human beings. For example, we can build CICMs for the 
word `` 生产 (produce, production)'' like Table 2 and then identify that `` 药品  生产
(pharmaceutical production)'' is also a concept, because the latter has the same constructive 
rule as ``食品 生产(food production)''. 
 
But unluckily, even we know ``药品 生产'' is a concept, our system still cannot tell whether ``

药品 制造(pharmaceutical manufacture)'' is also a concept for there are no CICMs for the word 
``制造''. The reason for this is that the system still cannot make use of word similarity. 
Therefore, we need to cluster words based on the similarity of CICMs and then learn more 
new concepts. 

 
4.1 Similarity Measurement of Words 
The similarity measurement of CICMs is the basis of clustering words in our task. Our 
measurement is founded on the intuitive distribute hypothesis that: 
Hypothesis 3 In concepts, similar words have similar CICMs. 
According to Hypothesis 3, the similarity of two words w1, w2 is defined as: 
 

sim(w1, w2)=sim(CICM(w1), CICM(w2)) (2) 
 
The commonly used similarity measure for two sets includes minimum distance, maximum 
distance, and average distance. Considering that there are still some noises in our training set 
which would result in some wrong C-Vectors in CICMs, we choose the average distance for 
it is more stable for noisy data, that is: 
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Now the problem is how to calculate the similarity of two C-Vectors of two words now. For 
two C-Vectors: 
 

C-Vectori=<i, W1,…,Wn>, C-Vectorj=<j,W1,…,Wm> (4) 
 
We standardize them to an \emph{N-Vector} that is: 
 

C-Vectori=<Wi-N,...,WiN>, C-Vectorj=<Wj-N,…,WjN> (5) 
 
and Wk=  if there is no word model in position k for both of them. We adopt the cosine 
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Note that we omit the details of each word vector for simplicity. Taking ``国民 生产 总值'' 
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these models. We use the confirmed concepts obtained in section 2.2 as a training set and 
learn CICMs hidden in them automatically. It is an instance learning process and the 
following procedure is implemented for this task: 
 
Algorithm 
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(1) Initializing the resources including (1.1) A words dictionary in which each one has fully parts 
of speech; (1.2) The HowNet dictionary; and (1.3) An attributes base of words (Tian, 2007). 
(2) Constructing a model set MSet to accommodate all the words' models which is empty 
initially. 
(3) For each concept cpt in the training set, segment it and create each word's C-Vector(wi). 
Subsequently, if C-Vector(wi) ∈ MSet(wi), then just accumulate the frequency; otherwise add 
C-Vector(wi) to MSet(wi). 
(4) Removing the C-Vectors which have low frequency for each word's MSet. 
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containing the word in the training set. We exclude the vectors which have low frequency, 
that is, if a C-Vector for a word is supported by just a few concepts, we look at it as an 
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Essentially, CICMs are models of instance analogy. We want to learn new concepts by 
``recalling'' the old ones just as human beings. For example, we can build CICMs for the 
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The commonly used similarity measure for two sets includes minimum distance, maximum 
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similarity when compare two vectors, that is: 
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4.2 Clustering Words based on the Density 
Among all the clustering methods using density functions has prominent 
advantages--anti-noisiness and the capability of finding groups with different Inspired by 
DENCLUE (Hinneburg & Keim, 1998), we define a influence function of a word w0 over 
another word w: 
 

0( , )w
BBf f w w  (7) 

 
which is a function proportionately to the similarity of w0 and w, and reveals the influence 
degree w0 over w. Commonly used influence functions include Square Wave Function and 
Gauss Function. The former is suitable for the data which dissimilar distinctly while the later 
is more suitable for reflect the smooth influence of w0. Because a word is related with many 
other words in different degrees but no simply 1 or 0 in corpus, it is more reasonable to 
choose Gauss Influence Function: 
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We call Equation (8) the Gauss Mutual Influence of w, w0 for fwGauss (w0)=fw0Gauss (w). It makes 
each word linked with many other words to some extent. According to it, we can cluster 
words into groups. Before giving the definition of a word group, we develop some 
definitions first for further discussing: 
 
Definition 4. Given a parameter  ,  _region(w0)={w|fGuess(w,w0)>  } is called 
_region of w0. Given a parameter MinPts, w0 is called a CoreWord if | _region(w0)|>MinPts. 
The minimal   which makes w0 to be a CoreWord is called the CoreDistance of w0 and be 
marked as  *. 
 
Definition 5. We call w0 is direct reachable to w' if w0 is a CoreDistance and w'∈ 
_region(w0)$ and marked as dreachable(w0,w'). For a set of words w0, w1, …,wn=w', if 
dreachable(wi,wi+1) for all wi, 1 ≤ i<n$, then w0 is reachable to w', that is, reachable(w0,w'). 
 
Based on the definitions above, a word group can be seen as the maximal words set based on 
the reachable property. The corresponding clustering algorithm is given below: 
 
(1)Taking  = * and for all the words w perform the following operation: 
  cur= *;cwcur={w}; 
 while( cur < 1){ 
   cwpre=cwcur; 

   if(| cur_region(w0)| > MinPts){ 
     Build a word group cvcur which contains all the words in  cur_region(w) 
     and takes w as the CoreWord of it. 
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(2)For each pair of CoreWords wi, wj 
if(d_reachable(w_i,w_j) 
   Merge cwi,cwj into a new group cwi+j which has two CoreWords cwi and cwj 
(3)Repeate (2) until no new groups are generated. 
Many groups with different density will be generated in (2) for we set value for   not a 
single number but a large range of field. The groups with high density will be created firstly 
and be covered by the dilute groups. We escape choosing the parameter of   by doing this. 

 
4.3 Identifying Concepts using CICMs 
Having the learned CICMs and word cluster, identifying method of new concepts is 
straightforward. Given a chunk, we just create its local L-Vector and judge whether it 
satisfies one of its or its similar words' C-Vector we have learned. 
 
Definition 6. For a chunk ck=w0… wn, the Local C-Vector for a word wi in it : 
L_Vector(wi, ck)=<i,W0,…,Wi-1, Wi+1,…, Wn>. 
Theorem 1. For a chunk ck=w0 … wn , for each word wi in it, there is L_Vector(wi, ck) ∈ 
CICM(gwi), then ck is a concept, where gwi is the similar word group of wi. 

 
5. Inner Relationship Discovery 
 

The concept extractor introduced in last chapters makes a large-scale concept set available to 
be used for discovering inner relationships of the concept. In this study, we have found a 
special kind of Chinese hyponymy relationship, called lexical hyponymy, which is of great 
importance in ontology learning. To the best of our knowledge, no existing method can 
extract these hyponym relations. In this chapter, we will show a semi-automatic lexical 
hyponymy acquisition approach within a large-scale concept set, integrating symbolic, 
statistical and hierarchal techniques. 
 
In a large-scale concept set C, if a subset S={<cpt1>,<cpt2>,…,<cptn>} exists, where 

<cpt1>=<pref1><suf>, 
<cpt2>=<pref2><suf>, 

… 
<cptn>=<prefn><suf>. 
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and be covered by the dilute groups. We escape choosing the parameter of   by doing this. 

 
4.3 Identifying Concepts using CICMs 
Having the learned CICMs and word cluster, identifying method of new concepts is 
straightforward. Given a chunk, we just create its local L-Vector and judge whether it 
satisfies one of its or its similar words' C-Vector we have learned. 
 
Definition 6. For a chunk ck=w0… wn, the Local C-Vector for a word wi in it : 
L_Vector(wi, ck)=<i,W0,…,Wi-1, Wi+1,…, Wn>. 
Theorem 1. For a chunk ck=w0 … wn , for each word wi in it, there is L_Vector(wi, ck) ∈ 
CICM(gwi), then ck is a concept, where gwi is the similar word group of wi. 

 
5. Inner Relationship Discovery 
 

The concept extractor introduced in last chapters makes a large-scale concept set available to 
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The <suf> here denotes a common suffix of all concepts. We may think the <suf> could be a 
hypernymy concept and following relations may exist: 
HISA(<cpt1>, <suf>), HISA(<cpt2>,<suf>),…, HISA(<cptn>,<suf>) 
For instance, given S={炭疽活菌苗, 冻干鼠疫活菌苗, 结核活菌苗, 自身菌苗, 外毒素菌苗}, we 
can segment the concepts as follows, 

<自身菌苗>=<自身><菌苗>, 
<外毒素菌苗>=<外毒素><菌苗>, 
<结核活菌苗>=<结核活><菌苗>, 
<炭疽活菌苗>=<炭疽活><菌苗>, 

<冻干鼠疫活菌苗>=<冻干鼠疫活><菌苗>, 
where the corresponding hypernymy concept suffix <suf> is <菌苗> and all HISA relations 
come into existence. However, if we consider the suffix chunk <苗> to be <suf> instead of <
菌苗> (i.e. we segment the concept <外毒素菌苗>:=<外毒素菌><苗> ), all HISA relations do 
not exist. Moreover, the suffix <苗> can not even be considered as a concept. We notice that a 
subset S’={结核活菌苗 , 炭疽活菌苗 , 冻干鼠疫活菌苗} of S contains a longer common 

hyponymy <活菌苗>, lexical hyponymy relations HISA(结核活菌苗, 活菌苗), HISA(炭疽活

菌苗, 活菌苗) and HISA(冻干鼠疫活菌苗, 活菌苗).  
 
We will investigate into such common suffix in a concept set and mine lexical hyponymy 
taking advantage of the common suffix features. There is a limitation in this approach: the 
size of the concept set should be very large in order to find such common chunks. In an 
extreme case, we can extract nothing if there is only one concept in the concept set, even if the 
only concept in the set contains rich lexical hyponymy relations. However, there is no 
definition how large can be thought to be very large and we will analysis this factor in the 
experiment section. 
 

 
Fig. 2. Lexical hyponymy acquisition framework 
 
Figure 2 describes our framework of lexical hyponymy acquisition. We use a Google-based 

statistical acquisition model [16] to extract concepts from web corpus, which results in a 
large-scale concept set and then clustered them into a common suffix tree according to 
suffixes of concepts. The suffix analysis module uses a set of statistical-based rules to analyze 
suffix nodes. Class concept candidates, which are concepts, are identified by our Google-base 
verification module and used to enlarge the original concept set. A class concept verification 
process was taken to verify class concept candidates. Human judgment-based relation 
verification is taken after a prefix clustering process dedicating to reduce the verification cost 
is done. Finally we got extracted hyponymy relations from the common suffix tree with a 
hierarchical structure.  

 
6. Common Suffix Tree Clustering 
 

To find and analyze the common suffix, we propose a data structure called common suffix tree 
(CST), inspired by suffix tree clustering (Cusfield, 1997).  
 
Definition 7. A common suffix tree containing m concepts is a tree with exactly m leaves. 
Each inner node, other than leaf, has more than two children, and contains a single Chinese 
gram. Each leaf indicates a concept with a longest shared suffix that equals the string leading 
from the leaf to root. Along with the path, the string from each inner node to root is a shared 
suffix of the concept indicated by leaves it can reach. 
 
With CST, not only are we able to find what is the longest shared suffix, we can also find 
which concepts share a certain common suffix. Following CST clustering algorithm will help 
us construct a CST in liner time complexity:  
 

CST Clustering Algorithm: 
Use the suffix-based clustering, and compute big 1-gram concept clusters. 
Until(convergence) { 

From each n-gram cluster, iterate the algorithm to get finer, hierarchy n+1 
gram clusters. 

} 
 

The convergence condition of algorithm above is when the all clusters leave one leaf. For 
instance, in a given concept-set S={北京第六中学，南京第十六中学，天津第二十六中学，经济
学，生物学，好学，同学，木鱼，黄花鱼，烧黄花鱼，鲤鱼}, The CST algorithm can be described 
as following steps: 
1) Using the suffix-based clustering, we get big 1-gram clusters ({*} represents the least 
common suffix): 
[北京第六中,南京第十六中,天津第二十六中,经济,生物,好,同]{学} 

[木, 黄花, 烧黄花, 鲤]{鱼}, 
2) From each 1-gram cluster, we iterate the algorithm to get finer, hierarchical clusters until 
convergence: 
[[[北京第, [南京第,天津第二]{十}]{六}]{中},经济,生物,好,同]{学} 

[木, [#, 烧]{黄花}, 鲤]{鱼}, 
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The <suf> here denotes a common suffix of all concepts. We may think the <suf> could be a 
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HISA(<cpt1>, <suf>), HISA(<cpt2>,<suf>),…, HISA(<cptn>,<suf>) 
For instance, given S={炭疽活菌苗, 冻干鼠疫活菌苗, 结核活菌苗, 自身菌苗, 外毒素菌苗}, we 
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<冻干鼠疫活菌苗>=<冻干鼠疫活><菌苗>, 
where the corresponding hypernymy concept suffix <suf> is <菌苗> and all HISA relations 
come into existence. However, if we consider the suffix chunk <苗> to be <suf> instead of <
菌苗> (i.e. we segment the concept <外毒素菌苗>:=<外毒素菌><苗> ), all HISA relations do 
not exist. Moreover, the suffix <苗> can not even be considered as a concept. We notice that a 
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菌苗, 活菌苗) and HISA(冻干鼠疫活菌苗, 活菌苗).  
 
We will investigate into such common suffix in a concept set and mine lexical hyponymy 
taking advantage of the common suffix features. There is a limitation in this approach: the 
size of the concept set should be very large in order to find such common chunks. In an 
extreme case, we can extract nothing if there is only one concept in the concept set, even if the 
only concept in the set contains rich lexical hyponymy relations. However, there is no 
definition how large can be thought to be very large and we will analysis this factor in the 
experiment section. 
 

 
Fig. 2. Lexical hyponymy acquisition framework 
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statistical acquisition model [16] to extract concepts from web corpus, which results in a 
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process was taken to verify class concept candidates. Human judgment-based relation 
verification is taken after a prefix clustering process dedicating to reduce the verification cost 
is done. Finally we got extracted hyponymy relations from the common suffix tree with a 
hierarchical structure.  
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To find and analyze the common suffix, we propose a data structure called common suffix tree 
(CST), inspired by suffix tree clustering (Cusfield, 1997).  
 
Definition 7. A common suffix tree containing m concepts is a tree with exactly m leaves. 
Each inner node, other than leaf, has more than two children, and contains a single Chinese 
gram. Each leaf indicates a concept with a longest shared suffix that equals the string leading 
from the leaf to root. Along with the path, the string from each inner node to root is a shared 
suffix of the concept indicated by leaves it can reach. 
 
With CST, not only are we able to find what is the longest shared suffix, we can also find 
which concepts share a certain common suffix. Following CST clustering algorithm will help 
us construct a CST in liner time complexity:  
 

CST Clustering Algorithm: 
Use the suffix-based clustering, and compute big 1-gram concept clusters. 
Until(convergence) { 

From each n-gram cluster, iterate the algorithm to get finer, hierarchy n+1 
gram clusters. 
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The convergence condition of algorithm above is when the all clusters leave one leaf. For 
instance, in a given concept-set S={北京第六中学，南京第十六中学，天津第二十六中学，经济
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as following steps: 
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where # represents an empty entry.  
Figure 3 visualized the CST structure of {学}-cluster. The rest parts of our framework are built 
on the computing and analysis on suffixes of CST. 
 

 
Fig. 3. Common Suffix Tree of {学}-cluster 

 
7. Suffix Analysis 
 

Given the “学” cluster in the example above, the suffix collection S={第十六中学, 十六中学, 六
中学, 中学} may all hypernymy concepts we interested in,  without any other information 
supporting (1-gram suffix causes great ambiguous, therefore we leave it alone in our system).  
Some suffix concepts may be extracted by some Chinese word segment systems [20], however, 
there is no word segment system adopted in our system, because the segment system performs 
poor in a large scale general-purposed concept set, where many suffixes cannot be correctly 
segmented and thus lowered the performance of the entire system.  
However, some useful statistic features can be obtained in a concept-set to identify class 
concepts. For a suffix chunk <ck> in concept-set, we may have patterns such as CNT[<ck><*>], 
CNT[<*><ck>], CNT[<*><ck><*>] and etc., where CNT[<pattern>] means the frequency of 
<pattern> in concept set. A list of examples of such patterns was listed in Table 3. 
 

Pattern Example 
(1) ISCpt[<ck>] <大学>∈S 
(2) CNT[<ck><*>] <大学>学生服务部,  

<大学>校区, … 
(3) CNT[<*><ck>]  理工<大学>, 科技<大学>, … 
(4) CNT[<*><ck><*>] 北京<大学>学生会,  

中国<大学>评估组, … 
Table 3. Statistical patterns and examples  
 
Pattern (1) is not a real statistic. The pattern, once appears in the given concept set, prove that 
indicated suffix <ck> is a class concept candidate. If the concept set is large enough (i.e. for any 
<cpt>, always exists <cpt>∈S), this single rule can be used to identify all class concept 
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where # represents an empty entry.  
Figure 3 visualized the CST structure of {学}-cluster. The rest parts of our framework are built 
on the computing and analysis on suffixes of CST. 
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Figure 4 shows some cases of suffix probability whose numbers of grams composed are 
ranging from 4 to 9. Such cases illustrate how suffix probability changes with varying 
number of grams.  
Figure 4 (V) shows the change of suffix frequency of concept <cpt>:= “混合型证券投资基金” 
in a concept set with a size of 800,000. Figure 4 (U) shows the situation when <cpt>:=“流行性
感冒病毒感染”. For instance,  
 

S(“混合型证券投资基金”, 2)=P(“基金”, “资基金”) 

=F(“资基金”)/F(“基金”)= 300/498 = 0.60241 
 

From the case (S) we observe that S(<cpt>, 3)=0.99667 is the maximum among S(<cpt>, 2), 
S(<cpt>, 3) and S(<cpt>, 4). At the same time Suf(<cpt>, 4) (i.e. 投资基金) is a class concept. 
Same situation could be found in maximum point S(<cpt>, 5) and S(<cpt>, 8), while Suf(<cpt>, 
6) and Suf(<cpt>, 8) are both class concept. In another case when <cpt>=“流行性感冒病毒感

染”, we find the same phenomenon that class concept happened to appear in inflexions, 
which makes us believe it to be a useful rule. The rule is proved to be very effective in later 
experiment and is defined as follows: 
 
Definition 8. (Suffix Probability Inflexion Rule) In a large-scale concept set, whenever the suffix 
probability S(<cpt>,n) encounters an inflexion, the suffix Suf(<cpt>,n+1) =<wn+1><wn>…<w1> 
is considered to be a class concept candidate, which is called Inflexion Rule.  
 
The suffix probability inflexion rule is exported from empirical study, and the hidden 
theoretical support of this rule is based on mutual information. The higher the S(<cpt>,n), then 
the suffix <wn>…<w1> and <wn+1><wn>…<w1> has higher mutual information, which may 
lead to a close correlation, the sudden reduce of mutual information means differentiation in 
linguistic usage.  
Based on the discussions above, we summarize three Suffix Concept Identification (SCI) Rules:  
1. Pattern ISCpt[<wx>] appears, then <wx> must be a concept. 
2. Pattern CNT[<wx><*>] or CNT[<*><wx><*>] appears, then <wx> can be a concept. 
3. Suffix Probability Inflexion Rule. 
 
The experimental baseline comparisons among three rules are listed in Table 4. We use SCI 
rules in an 800,000 concept set and 300 test cases and manually extract all the class concept 
candidates in test cases, denoted by cm. Then we use SCI rules to extract class concepts, 
denoted by ca. We adopt following evaluation measurements in baseline experiment: 
 

Precision = | ca ∩ cm | / | ca | 
Recall = | ca ∩ cm | / | cm | 

 
The average value and standard deviation of precisions and recalls are computed in 5 
baseline scheme. Rules based on (1), (2) or the combinations of which have a low recall 
although with a high precision, as a result of the data sparsity. However, rule (3) holds a high 
precision and at the same time has a promising recall once combined with the other two 
rules. 

 Precision Recall 
Average Std. Dev Average Std. Dev 

Rule(1) 100% 0 - n/a 
Rule(2) 95.753% 0.4603 - n/a 
Rule(3) 98.641% 0.1960 65.125% 2.393 
Rule(1,2) 96.561% 0.5133 - n/a 
Rule(1,2,3) 98.145% 0.5029 66.469% 2.792 

Table 4. SCI Rules Baseline Comparison (- mean the value is lower than 5%). 

 
8. Class Concept Verification 
 

In previous section we mentioned that not every concept could be a class concept. In this 
section, we proposed a lexicon-syntactic approach to verify class concept by scoring concepts 
via Googling web corpus. 
Through our investigation, class concepts primarily appear in three kinds of 
lexicon-syntactic patterns which have different semantic meanings: Class I patterns appear 
when people are trying to give examples. Class II patterns are used when people construct 
question sentences. Class III patterns are, on the other hand, commonly used when we give 
definitions. The generic type of Class II is <Which><*>, where <Which> is some of the 
interrogatives. The generic type of Class II is <是> <Unit><*>, and here <Unit> is some of the 
unit quantifiers. Therefore, the pattern II and III includes a number of patterns. All three 
types of pattern with examples are summarized as shown in Table 5.  
 

Pattern Type Pattern Examples Examples 
Class I 
<Such as><*> 

<ClassCpt>例如 一些水果例如香蕉，它如何繁衍后

代 
等<ClassCpt> 76%预期深圳等城市的房价将下跌 

Class II 
<Which><*> 

什么<ClassCpt> 福威镖局在福州府的什么大街 
哪些<ClassCpt> 中国哪些城市适宜工作?  
那种<ClassCpt> 青苹果和红苹果哪种苹果有营养 

Class III 
<是><Unit><*> 

是 一 个

<ClassCpt> 
法国夏特瑞城是一个小镇 

是 一 种
<ClassCpt> 

宪政是一种文化 

是 一 类
<ClassCpt> 

他和你是一类人 

Table 5. Patterns and examples in three classes 
 
Definition 9. Google provides statistical information in web corpus, probability framework 
based on which has been built by (Zhou et al., 2007; Cilibrasi & Vitanyi, 2007). Given a lexical 
chunk <ck>, the frequency of this term is defined as number of pages containing such term, 
denoted by f(<ck>).  
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Figure 4 shows some cases of suffix probability whose numbers of grams composed are 
ranging from 4 to 9. Such cases illustrate how suffix probability changes with varying 
number of grams.  
Figure 4 (V) shows the change of suffix frequency of concept <cpt>:= “混合型证券投资基金” 
in a concept set with a size of 800,000. Figure 4 (U) shows the situation when <cpt>:=“流行性
感冒病毒感染”. For instance,  
 

S(“混合型证券投资基金”, 2)=P(“基金”, “资基金”) 

=F(“资基金”)/F(“基金”)= 300/498 = 0.60241 
 

From the case (S) we observe that S(<cpt>, 3)=0.99667 is the maximum among S(<cpt>, 2), 
S(<cpt>, 3) and S(<cpt>, 4). At the same time Suf(<cpt>, 4) (i.e. 投资基金) is a class concept. 
Same situation could be found in maximum point S(<cpt>, 5) and S(<cpt>, 8), while Suf(<cpt>, 
6) and Suf(<cpt>, 8) are both class concept. In another case when <cpt>=“流行性感冒病毒感

染”, we find the same phenomenon that class concept happened to appear in inflexions, 
which makes us believe it to be a useful rule. The rule is proved to be very effective in later 
experiment and is defined as follows: 
 
Definition 8. (Suffix Probability Inflexion Rule) In a large-scale concept set, whenever the suffix 
probability S(<cpt>,n) encounters an inflexion, the suffix Suf(<cpt>,n+1) =<wn+1><wn>…<w1> 
is considered to be a class concept candidate, which is called Inflexion Rule.  
 
The suffix probability inflexion rule is exported from empirical study, and the hidden 
theoretical support of this rule is based on mutual information. The higher the S(<cpt>,n), then 
the suffix <wn>…<w1> and <wn+1><wn>…<w1> has higher mutual information, which may 
lead to a close correlation, the sudden reduce of mutual information means differentiation in 
linguistic usage.  
Based on the discussions above, we summarize three Suffix Concept Identification (SCI) Rules:  
1. Pattern ISCpt[<wx>] appears, then <wx> must be a concept. 
2. Pattern CNT[<wx><*>] or CNT[<*><wx><*>] appears, then <wx> can be a concept. 
3. Suffix Probability Inflexion Rule. 
 
The experimental baseline comparisons among three rules are listed in Table 4. We use SCI 
rules in an 800,000 concept set and 300 test cases and manually extract all the class concept 
candidates in test cases, denoted by cm. Then we use SCI rules to extract class concepts, 
denoted by ca. We adopt following evaluation measurements in baseline experiment: 
 

Precision = | ca ∩ cm | / | ca | 
Recall = | ca ∩ cm | / | cm | 

 
The average value and standard deviation of precisions and recalls are computed in 5 
baseline scheme. Rules based on (1), (2) or the combinations of which have a low recall 
although with a high precision, as a result of the data sparsity. However, rule (3) holds a high 
precision and at the same time has a promising recall once combined with the other two 
rules. 

 Precision Recall 
Average Std. Dev Average Std. Dev 

Rule(1) 100% 0 - n/a 
Rule(2) 95.753% 0.4603 - n/a 
Rule(3) 98.641% 0.1960 65.125% 2.393 
Rule(1,2) 96.561% 0.5133 - n/a 
Rule(1,2,3) 98.145% 0.5029 66.469% 2.792 

Table 4. SCI Rules Baseline Comparison (- mean the value is lower than 5%). 

 
8. Class Concept Verification 
 

In previous section we mentioned that not every concept could be a class concept. In this 
section, we proposed a lexicon-syntactic approach to verify class concept by scoring concepts 
via Googling web corpus. 
Through our investigation, class concepts primarily appear in three kinds of 
lexicon-syntactic patterns which have different semantic meanings: Class I patterns appear 
when people are trying to give examples. Class II patterns are used when people construct 
question sentences. Class III patterns are, on the other hand, commonly used when we give 
definitions. The generic type of Class II is <Which><*>, where <Which> is some of the 
interrogatives. The generic type of Class II is <是> <Unit><*>, and here <Unit> is some of the 
unit quantifiers. Therefore, the pattern II and III includes a number of patterns. All three 
types of pattern with examples are summarized as shown in Table 5.  
 

Pattern Type Pattern Examples Examples 
Class I 
<Such as><*> 

<ClassCpt>例如 一些水果例如香蕉，它如何繁衍后

代 
等<ClassCpt> 76%预期深圳等城市的房价将下跌 

Class II 
<Which><*> 

什么<ClassCpt> 福威镖局在福州府的什么大街 
哪些<ClassCpt> 中国哪些城市适宜工作?  
那种<ClassCpt> 青苹果和红苹果哪种苹果有营养 

Class III 
<是><Unit><*> 

是 一 个

<ClassCpt> 
法国夏特瑞城是一个小镇 

是 一 种
<ClassCpt> 

宪政是一种文化 

是 一 类
<ClassCpt> 

他和你是一类人 

Table 5. Patterns and examples in three classes 
 
Definition 9. Google provides statistical information in web corpus, probability framework 
based on which has been built by (Zhou et al., 2007; Cilibrasi & Vitanyi, 2007). Given a lexical 
chunk <ck>, the frequency of this term is defined as number of pages containing such term, 
denoted by f(<ck>).  
 



New Advances in Machine Learning320

Definition 10. For a concept <cpt>, the pattern frequency is defined as f(Pattern(<cpt>)), 
where Pattern(<cpt>) is applying the concept to a certain pattern. Pattern association is 
defined as the pattern frequency of the concept dividing its frequency, denoted by 
p(Pattern(<cpt>)). 
 

( ( )) ( ( )) / ( )p Pattern cpt f Pattern cpt f cpt        (10) 
 
To verify class concepts, pattern associations can be used as attributes to train a classifier by 
machine learning algorithms. However, according to the linguistic property of the three 
classes, the pattern associations of a certain concept are likely to associate well with only one 
pattern in each class. Therefore we only use the patterns that can have the maximum pattern 
association in each class. We use the liner combination to sum pattern associations of all three 
classes into a scoring function, which is proved to be more effective than adopting three 
separate attributes.  
Three classes of patterns are assigned with different class weights wI, wII, wIII, which can be 
used to adjust score according to liner analysis methods. Besides, we take the frequency of 
concept as a coefficient of the score, which indicates that a concept with a higher frequency is 
more likely to be a class concept. To sum all effects above, the expression of scoring a concept 
<cpt> is: 
 

( , , )
( ) ( ( )) ( ( ( ( ))))

i
i j

j Classi I II III
Score cpt Log f cpt w Max p Pattern cpt



          (11) 

 
To obtain a score threshold identifying class concept, we firstly annotate a training set of 3000 
concepts, including 1500 class concept and 1500 non-class concept. We then use Google to 
retrieve pattern associations of training set. So the pattern associations are calculated into a 
score. And we use a linear analysis method to adjust the class weighs that can maximize the 
scoring function, and finally we get a score threshold. Concepts that exceed the given 
threshold are classified as class concept and vice versa. In our experiment, the class concept 
classifier we built is proved to achieve a remarkable high accuracy at 95.52%. 

 
9. Prefix Clustering 
 

Due to the property of lexical hyponymy relations, they hardly appear in other sources such 
as text corpus and web corpus, which makes human judgment a compulsory step in the 
relation verification process. In a large-scale concept set, the number of lexical hyponymy 
relations is huge, and thus it becomes a misery if we need to manually verify each relation. 
In a concept sub-set S={<京津塘高速公路>, <长株潭高速公路>, <京石高速公路>, <京承高速

公路>, <信息高速公路>} with the suffix Suf={<*>, 4} and Suf={<*>, 2}, where <*> denotes the 
wildcard of concepts, but the hyponymy relation within term <信息高速公路(Information 
High-Way)> is different from others. Since the concept is a kind of metaphor, there is not a 
real lexical hyponymy relation. If we can cluster the relations into meaningful groups, such 
as, metaphor group and non-metaphor group, it is possible for us to verify parts of the 
relation group instead of all relations. 
We notice that a prefix <pref> of a concept <cpt>=<pref><suf> is typically a term that forms 
parts of other concepts in our concept set. Given a <pref>, H(<pref>) denotes all chunks that 

appears before <pref> in other concepts and T(<pref>) denotes all chunks that appears after 
<pref> in other concepts. The two statistical information, that provided by concept set 
context, can be used to define the similarity of two prefixes. 
Definition 11. Prefix Similarity is a quantity for measuring the similarity of two prefixes 
within a concept-set context. It is the average of Crossover Coefficients of Head Similarity 
and Tail Similarity.  
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min(| ( ) |,| ( ) |) min(| ( ) |,| ( ) |)

H x H y T x T ySim x y
H x H y T x T y
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     
       

 (12) 

 
K-cluster technique, which is the simplest unsupervised learning algorithm, enables us to 
cluster data according to a given number of clusters k (MacQueen, 1967). With the ease to 
control cluster number, we can then flexibly choose a specific grain to cluster our relations. 
We perform a k-cluster algorithm on concept set using prefix similarity. In the case above, 
there are 1210 concepts containing “信息” in our 800,000 concept set. Other prefix terms 
rarely appear and share some terms such as <*><收费站>. Given k=2, the prefix <信息> will 
be placed in a separate group through clustering, while the rest four prefixes are grouped 
into one cluster. Hence, we only need to judge two hyponymy relations respectively from 
each cluster. From the empirical study, the best k-value is a median proportion of the size of 
the target concept sub-set. 
 

 
Fig. 5. Judging cases and accuracy in prefix clustering 
 
This step is optional comparing to other modules employed in our framework, and 
sometimes it may lower the precision of the system. Figure 5 describes our judging cases and 
accuracy in a 1000-sized sub tree of a CST built by an 800,000 concept set. When setting the 
K-value to be 8, we will have an accuracy of 90.4% by judging 62% relation cases. 
Remarkably，not only does the percentage of judging cases depend on K-value, it also relates 
to the structure of targeting CST. However, prefix clustering will significantly improve the 
efficiency of human judgment during verification phase. 

 
10. Discovering Hierarchical Lexical Hyponymy 
 

Given a concept set C, we use the CST clustering technique to build a CST. Then we compute 
the statistics of patterns described in Sect. 6 and store them in each CST node. We apply the 
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Definition 10. For a concept <cpt>, the pattern frequency is defined as f(Pattern(<cpt>)), 
where Pattern(<cpt>) is applying the concept to a certain pattern. Pattern association is 
defined as the pattern frequency of the concept dividing its frequency, denoted by 
p(Pattern(<cpt>)). 
 

( ( )) ( ( )) / ( )p Pattern cpt f Pattern cpt f cpt        (10) 
 
To verify class concepts, pattern associations can be used as attributes to train a classifier by 
machine learning algorithms. However, according to the linguistic property of the three 
classes, the pattern associations of a certain concept are likely to associate well with only one 
pattern in each class. Therefore we only use the patterns that can have the maximum pattern 
association in each class. We use the liner combination to sum pattern associations of all three 
classes into a scoring function, which is proved to be more effective than adopting three 
separate attributes.  
Three classes of patterns are assigned with different class weights wI, wII, wIII, which can be 
used to adjust score according to liner analysis methods. Besides, we take the frequency of 
concept as a coefficient of the score, which indicates that a concept with a higher frequency is 
more likely to be a class concept. To sum all effects above, the expression of scoring a concept 
<cpt> is: 
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To obtain a score threshold identifying class concept, we firstly annotate a training set of 3000 
concepts, including 1500 class concept and 1500 non-class concept. We then use Google to 
retrieve pattern associations of training set. So the pattern associations are calculated into a 
score. And we use a linear analysis method to adjust the class weighs that can maximize the 
scoring function, and finally we get a score threshold. Concepts that exceed the given 
threshold are classified as class concept and vice versa. In our experiment, the class concept 
classifier we built is proved to achieve a remarkable high accuracy at 95.52%. 

 
9. Prefix Clustering 
 

Due to the property of lexical hyponymy relations, they hardly appear in other sources such 
as text corpus and web corpus, which makes human judgment a compulsory step in the 
relation verification process. In a large-scale concept set, the number of lexical hyponymy 
relations is huge, and thus it becomes a misery if we need to manually verify each relation. 
In a concept sub-set S={<京津塘高速公路>, <长株潭高速公路>, <京石高速公路>, <京承高速

公路>, <信息高速公路>} with the suffix Suf={<*>, 4} and Suf={<*>, 2}, where <*> denotes the 
wildcard of concepts, but the hyponymy relation within term <信息高速公路(Information 
High-Way)> is different from others. Since the concept is a kind of metaphor, there is not a 
real lexical hyponymy relation. If we can cluster the relations into meaningful groups, such 
as, metaphor group and non-metaphor group, it is possible for us to verify parts of the 
relation group instead of all relations. 
We notice that a prefix <pref> of a concept <cpt>=<pref><suf> is typically a term that forms 
parts of other concepts in our concept set. Given a <pref>, H(<pref>) denotes all chunks that 

appears before <pref> in other concepts and T(<pref>) denotes all chunks that appears after 
<pref> in other concepts. The two statistical information, that provided by concept set 
context, can be used to define the similarity of two prefixes. 
Definition 11. Prefix Similarity is a quantity for measuring the similarity of two prefixes 
within a concept-set context. It is the average of Crossover Coefficients of Head Similarity 
and Tail Similarity.  
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K-cluster technique, which is the simplest unsupervised learning algorithm, enables us to 
cluster data according to a given number of clusters k (MacQueen, 1967). With the ease to 
control cluster number, we can then flexibly choose a specific grain to cluster our relations. 
We perform a k-cluster algorithm on concept set using prefix similarity. In the case above, 
there are 1210 concepts containing “信息” in our 800,000 concept set. Other prefix terms 
rarely appear and share some terms such as <*><收费站>. Given k=2, the prefix <信息> will 
be placed in a separate group through clustering, while the rest four prefixes are grouped 
into one cluster. Hence, we only need to judge two hyponymy relations respectively from 
each cluster. From the empirical study, the best k-value is a median proportion of the size of 
the target concept sub-set. 
 

 
Fig. 5. Judging cases and accuracy in prefix clustering 
 
This step is optional comparing to other modules employed in our framework, and 
sometimes it may lower the precision of the system. Figure 5 describes our judging cases and 
accuracy in a 1000-sized sub tree of a CST built by an 800,000 concept set. When setting the 
K-value to be 8, we will have an accuracy of 90.4% by judging 62% relation cases. 
Remarkably，not only does the percentage of judging cases depend on K-value, it also relates 
to the structure of targeting CST. However, prefix clustering will significantly improve the 
efficiency of human judgment during verification phase. 
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Given a concept set C, we use the CST clustering technique to build a CST. Then we compute 
the statistics of patterns described in Sect. 6 and store them in each CST node. We apply the 
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SCI rules to extract class concept candidates T’, and add them to C, enlarging our original 
concept set. We verify the unverified candidates in T’ with the Google-base verification 
described in Sect. 7, and get a class concept set T. In lexical hyponymy relation candidate set 
H’, we remove all the relations that have hypernymy concepts in T-T’.  
Lexical hyponymy relations are generated as follows: For a given concept node <cpt>, set 
{<s-cpt1>… <s-cptn>} is used to denote all the verified class concept nodes it goes through in 
CST, and we have HISA(<s-cpti>,<s-cptj>) (i<j). Put all generated relations to H’. As the 
original concept set changed, we update statistical information of each node, and keep 
performing steps above until the status of each node remains unchanged. Finally we cluster 
the prefix according to Sect.7 and judge one relation candidate in each cluster in H’, resulting 
our final hierarchical lexical hyponymy relation set H. The pseudo code of acquiring process is 
given in Figure 6. 
 

 
Acquiring a large-scale concept set C. 
Constructing CST using CST clustering. 
While(Convergence){ 
    Compute statistical information of inner nodes. 
For each concept node <cpt> in CST { 
Apply SCI rules. 
    Get all class concept candidates T’  
C←T’ 
        T← Verify unverified candidates in T’ 
        Remove hyponymy of invalid candidates   
H’←All relation candidates in T 
} 
} 
Perform Prefix Clustering in H’ 
Judging Relations in H’, resulting H 

Fig. 6. Acquiring hierarchical lexical hyponymy relations 
 

Fig. 7. An example of hierarchical acquisition process 

To better illustrate this acquisition process, an example is given in Figure 7. Nodes {a, b, c, d, e, 
f} are suffix chunk nodes in a Common Suffix Tree. A suffix chunk node represents a lexical 
chunk of string starting from the corresponding CST node leading to the root. In (I), we have 
already known that b, d, e are class concept nodes and the rest are unknown nodes. Through 
suffix analysis, a is proved to be a non-concept and b, c are identified to be class concept 
candidates, as shown in (II). The candidates are then verified by the class concept classifier. 
In (III), c is classified as class concept and d is classified as non-class concept. Hyponymy 
relation candidates are HISA(d, c), HISA(e, c), HISA(d, b), HISA(e, b), HISA(f, b), where HISA(d, 
b) and HISA(e, b) are derived from transitivity of hyponymy relation. HISA(e, c) is judged as a 
non-hyponymy relation, leading that HISA(e, b) to be removed, as shown in (IV). 

 
11. Experiment 
 

11.1 Concept Extraction 
The concept extraction part of our system is called Concept Extractor (CptEx) and uses the 
following formulae to evaluate its performance: 
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 (8) 

 
where ma are the concepts CptEx extracts and $m_{m}$ are the ones built manually. To 
calculate the performance, we selected 1000 chunks from the raw corpus and label the 
concepts in them manually. We compare the results based on CICMs with those based the 
Syntax Models and the POS Models as shown in Table 6: 
 

Measurement Syntax Models POS Models CICM 
p 98.5% 86.1% 89.1% 
r 1.2% 87.8% 84.2% 
F-measure 2.3% 86.9% 86.6% 

Table 6. Performance of CptEx 
 
Having adopted CICMs to distinguish concepts from the chunks extracted by lexico-patterns, 
the precision rate drops down to 89.1% while the recall rate flies to 84.2%. The precision rate 
reduces because there are still some improper CICMs which will confirm fake concepts.  
Compared with POS Models, CICMs has a higher accuracy rate because we consider more 
factors to clarify the inner constructive rules rather than using part of speech only. On the 
other hand, our stricter models result in a lower recall rate. 

 
11.2 Relation Mining 
Our lexical hyponymy relation discovery is being evaluated through 5 concept sets of the 
size of 10000, 50000, 100000, 400000, and 800000, respectively. To compare their performances 
under different settings, we use the resulting lexical hyponymy relations acquired, followed 
by a human judgment with a k=10 prefix clustering. The same evaluation system as the last 
section is used to evaluate the performance of our system:  
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SCI rules to extract class concept candidates T’, and add them to C, enlarging our original 
concept set. We verify the unverified candidates in T’ with the Google-base verification 
described in Sect. 7, and get a class concept set T. In lexical hyponymy relation candidate set 
H’, we remove all the relations that have hypernymy concepts in T-T’.  
Lexical hyponymy relations are generated as follows: For a given concept node <cpt>, set 
{<s-cpt1>… <s-cptn>} is used to denote all the verified class concept nodes it goes through in 
CST, and we have HISA(<s-cpti>,<s-cptj>) (i<j). Put all generated relations to H’. As the 
original concept set changed, we update statistical information of each node, and keep 
performing steps above until the status of each node remains unchanged. Finally we cluster 
the prefix according to Sect.7 and judge one relation candidate in each cluster in H’, resulting 
our final hierarchical lexical hyponymy relation set H. The pseudo code of acquiring process is 
given in Figure 6. 
 

 
Acquiring a large-scale concept set C. 
Constructing CST using CST clustering. 
While(Convergence){ 
    Compute statistical information of inner nodes. 
For each concept node <cpt> in CST { 
Apply SCI rules. 
    Get all class concept candidates T’  
C←T’ 
        T← Verify unverified candidates in T’ 
        Remove hyponymy of invalid candidates   
H’←All relation candidates in T 
} 
} 
Perform Prefix Clustering in H’ 
Judging Relations in H’, resulting H 

Fig. 6. Acquiring hierarchical lexical hyponymy relations 
 

Fig. 7. An example of hierarchical acquisition process 

To better illustrate this acquisition process, an example is given in Figure 7. Nodes {a, b, c, d, e, 
f} are suffix chunk nodes in a Common Suffix Tree. A suffix chunk node represents a lexical 
chunk of string starting from the corresponding CST node leading to the root. In (I), we have 
already known that b, d, e are class concept nodes and the rest are unknown nodes. Through 
suffix analysis, a is proved to be a non-concept and b, c are identified to be class concept 
candidates, as shown in (II). The candidates are then verified by the class concept classifier. 
In (III), c is classified as class concept and d is classified as non-class concept. Hyponymy 
relation candidates are HISA(d, c), HISA(e, c), HISA(d, b), HISA(e, b), HISA(f, b), where HISA(d, 
b) and HISA(e, b) are derived from transitivity of hyponymy relation. HISA(e, c) is judged as a 
non-hyponymy relation, leading that HISA(e, b) to be removed, as shown in (IV). 

 
11. Experiment 
 

11.1 Concept Extraction 
The concept extraction part of our system is called Concept Extractor (CptEx) and uses the 
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where ma are the concepts CptEx extracts and $m_{m}$ are the ones built manually. To 
calculate the performance, we selected 1000 chunks from the raw corpus and label the 
concepts in them manually. We compare the results based on CICMs with those based the 
Syntax Models and the POS Models as shown in Table 6: 
 

Measurement Syntax Models POS Models CICM 
p 98.5% 86.1% 89.1% 
r 1.2% 87.8% 84.2% 
F-measure 2.3% 86.9% 86.6% 

Table 6. Performance of CptEx 
 
Having adopted CICMs to distinguish concepts from the chunks extracted by lexico-patterns, 
the precision rate drops down to 89.1% while the recall rate flies to 84.2%. The precision rate 
reduces because there are still some improper CICMs which will confirm fake concepts.  
Compared with POS Models, CICMs has a higher accuracy rate because we consider more 
factors to clarify the inner constructive rules rather than using part of speech only. On the 
other hand, our stricter models result in a lower recall rate. 

 
11.2 Relation Mining 
Our lexical hyponymy relation discovery is being evaluated through 5 concept sets of the 
size of 10000, 50000, 100000, 400000, and 800000, respectively. To compare their performances 
under different settings, we use the resulting lexical hyponymy relations acquired, followed 
by a human judgment with a k=10 prefix clustering. The same evaluation system as the last 
section is used to evaluate the performance of our system:  
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Fig. 8. System performance with different concept set size 
 
From the acquisition result shown in Fig.8, we can discover that F-measure incrementally 
increases coincides the larger concept-set size, from 24.93 in 10000-sized concept set, 
climbing to 78.34 in 800000 one. Precision lower slightly and recall increase significantly with 
a larger concept set. As the size of concept set enlarges, more statistical information emerges, 
and at the same time more suffix concepts are extracted as class concepts, some of which 
form lexical hyponymy relations, causing a higher recall, while some other relations are 
invalid, leading to a lower precision. Under the concept-set with a size of 800000, the 
precision is 93.8% and recall reaches to 67.24%. The recall can be even higher when given a 
larger concept set.  
In our concept set, we discover noise due to exocentric compounds, in which the suffix 
concepts are not hypernymy concepts. So far, no effort has been done to verify Chinese 
exocentric structures and the difficulty of linguistic usage makes it hard to analyze semantic 
relation within Chinese lexical concepts, which inevitably lower the precision of our 
framework. 
Single-gram hypernymy concepts, such as ‘计’, are likely to cause ambiguity. In our concept 

set, we find a large number of concepts ended with suffixes like {“硬度计”,“光度计”, “温度

计”, “速度计”, “长度计”, “高度计”}. The mutual information between “度” and “计” is very 

high, leading the algorithm adopting SPI rule to wrongly mark the chunk “度计”, rather than 

“计”, as a class concept candidate. This problem might be solved if we could avoid the 
information sparsity by further enlarging the concept set.  
The precision of class concept verification module is an important factor to the performance 
of whole system. We can further obtain a larger feature space and enhance the performance 
by employing advanced learning techniques such as SVM and Naïve Bayes Network.  
Final precision of the framework is affected by our prefix clustering judgment, however, 
when the concept set becomes larger and thus more relations are extracted, it is inevitable for 
us to adopt that judgment. 
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12. Conclusion 
 

We have described a new approach for automatic acquisition of concepts from text based on 
Syntax Models and CICMs of concepts. This method extracted a large number of candidate 
concepts using lexico-patterns firstly, and then learned CICMs to identify more concepts 
accordingly. Experiments have shown that our approach is efficient and effective. We test the 
method in a 160G free text corpus, and the outcome indicates the utility of our method.  
To discover the inner relationships of the concept set, we propose a novel approach to 
discover lexical hyponymy relations in a large-scale concept set and make the acquisition of 
lexical hyponymy relations possible. In this method we cluster a concept set into a common 
suffix tree firstly, and then use the proposed statistical suffix identification rules to extract 
class concept candidates in the inner nodes of the common suffix tree. We then design a 
Google-base symbolic class concept verifier. Finally we extract Lexical hyponymy relations 
and judge them after the prefix clustering process. Experimental result has shown that our 
approach is efficient and can correctly acquire most lexical hyponymy relations in a 
large-scale concept set.  
In the concept extraction part there are still some more works be done to get better 
performance for there are some improper CICMs. We plan to validate concepts in an open 
corpus such as in the World Wide Web in the future. In the relation discovery future work 
will be concentrated on the extraction of single-gram suffixes, which covers a large part of 
lexical hyponymy relations. On the other hand, through inner cross verification within a 
concept set, an approach that automatically verifies hyponymy relation is coming soon. 
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We have described a new approach for automatic acquisition of concepts from text based on 
Syntax Models and CICMs of concepts. This method extracted a large number of candidate 
concepts using lexico-patterns firstly, and then learned CICMs to identify more concepts 
accordingly. Experiments have shown that our approach is efficient and effective. We test the 
method in a 160G free text corpus, and the outcome indicates the utility of our method.  
To discover the inner relationships of the concept set, we propose a novel approach to 
discover lexical hyponymy relations in a large-scale concept set and make the acquisition of 
lexical hyponymy relations possible. In this method we cluster a concept set into a common 
suffix tree firstly, and then use the proposed statistical suffix identification rules to extract 
class concept candidates in the inner nodes of the common suffix tree. We then design a 
Google-base symbolic class concept verifier. Finally we extract Lexical hyponymy relations 
and judge them after the prefix clustering process. Experimental result has shown that our 
approach is efficient and can correctly acquire most lexical hyponymy relations in a 
large-scale concept set.  
In the concept extraction part there are still some more works be done to get better 
performance for there are some improper CICMs. We plan to validate concepts in an open 
corpus such as in the World Wide Web in the future. In the relation discovery future work 
will be concentrated on the extraction of single-gram suffixes, which covers a large part of 
lexical hyponymy relations. On the other hand, through inner cross verification within a 
concept set, an approach that automatically verifies hyponymy relation is coming soon. 
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1. Introduction 
 

In the research field of natural language understanding, sentence stands a very prominent 
position in text processing.  The process of sentence understanding involves computing the 
meaning of a sentence based on analysis of meanings of its individual words. Research 
procedures in sentence understanding examine the representations and processes that 
connect the identification of individual words in text reading (Culter, 1995; Balota, 1994) 
with mapping sentence meanings to relevant mental models (Johnson-Laird, 1983) or 
discourse representations (Kintsch, 1988; van Eijck & Kamp, 1997). 
The task of sentence understanding includes two stages, sentence parsing and semantic 
processing. Sentence parsing resides in the fundamental level, while semantic 
understanding involves lexcial and higher discourse analysis.  Sentence understanding has 
compact connections with human cognition, thus this chaper will introduce how cognitive 
models are integrated, with machine learning algorithms (or models), into the procedures of 
sentence parsing and semantic processing.  

 
2. Statistical Learning Review 
 

Over the past decade, statistical learning, a means to discover hidden structures or patterns 
by analyzing statistical properties of the input, has emerged a general candidate mechanism 
by which a wide range of linguistic experience can be acquired (Saffran, 2003).  
Statistical learning, as a type of implicit learning, has been demonstrated across a variety of 
natural and artificial language learning situations, including learning of information that is 
potentially highly relevant to sentence comprehension processes, such as using function 
words to delineate phrases (Green, 1979), integrating prosodic and morphological cues in 
the learning of phrase structure (Morgan et al., 1987), parsing each natural language 
sentence (Charniak, 1997) to a hierarchical structure which presents how words hookup 
together to form constituents, discovering phonological and distributional cues to lexical 
categories (Monaghan et al., 2005), locating syntactic phrase boundaries (Saffran, 2001; 
2003), and detecting long-distance relationships between words (Gómez, 2002; Onnis et al., 
2003).  

20
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Misyak & Christiansen (2007) revealed that statistical learning ability was a stronger 
predictor of relative clause comprehension than the reading span measure, and suggested 
that statistical learning may play a strong role in the accumulation of linguistic experience 
relevant for sentence processing.  
Moreover, within natural language comprehension and production studies, there is clear 
evidence that prior experience of a given syntactic structure affects (1) comprehension of 
similar structures and (2) the probability that a speaker will utter a sentence with the same 
or similar structure, even when there is no meaning overlap between sentences (Ferreira & 
Bock, 2006).  
Syntactic priming has been described as stemming from statistical learning at the syntactic 
level (Bock & Griffin, 2000; Chang et al., 2006) or at the syntactic–semantic interface (Chang 
et al., 2003), which can be viewed as examples of statistical learning of information relevant 
to sentence processing.  
Above research works have testified the significance of statistical learning for natural 
language processing, including sentence comprehension, and also explicitly pointed out the 
performance bottlenecks (Monaghan et al., 2005; Dell & Bock, 2006; Misyak & Christiansen, 
2007) of statistical processing technologies. Since human, rather than the computer software 
and hardware, is the core subject to process and understand natural language, it is essential 
to survey pivotal research works regarding human cognition.  

 
3. Cognitive Concepts Highlight 
 

Sentences convey not only lexico-semantic information for each word, but sentence meaning 
based on syntactic structures (Townsend & Bever, 2001; Friederici, 2002), which has 
elucidated the importance of syntactic structures for sentences.  
Recursion is a unique human component of the faculty of language (Hauser et al., 2002), 
which is also known as the property of discrete infinity, the ability to generate an infinite 
range of discrete expressions from a finite set of elements. Sentences are indeed such infinite 
expressions generated from a limited set of words, signs, or letters; and syntactic 
mechanisms (Chomsky, 2000) have been applied to instantiate this property. 
Thus, the processing of syntactic structures plays a critical role in the selective integration of 
lexico-semantic information into sentence meaning. Syntactic analyses are performed in the 
service of semantics, and sentence meaning is derived from syntactic analyses of the 
sentence structures. 
As mentioned before, the procedure of sentence understanding includes sentence parsing at 
a fundamental level, and semantic understanding at lexcial and higher discourse analysis. 
This section will highlight several cognitive concepts regarding sentence parsing and 
emantic understanding. 

 
3.1 Syntax-First and Interactive Models 
How human beings parse sentences, especially for syntactically ambiguous sentences, has 
been a long-history cognitive research topic attracting research efforts for decades in the 
field of cognitive psychology.  In cognitive psychology, behavioristic experiments have been 
popularly implemented to explore the sentence-analyzing mechanism, which is also called 
“parser”, especially in the case that human beings cannot automatically constitute the 
meaning of a sentence.  

  

 

With respect to syntactic and semantic processing in sentence comprehension, two main 
classes of cognitive models have been proposed to account for the behavioral data: Syntax-
First and Interactive models.  
Syntax-First models (Fodor, 1983; Frazier & Fodor, 1978; Kako & Wagner, 2001) claims that, 
(1) syntax plays the main part whereas semantics is only a supporting role, (2) the parser 
initially builds a syntactic structure based on word category information, which is 
independent from lexical or semantic information, and (3) thematic role assignment takes 
place during a second stage. If the initial syntactic structure cannot be mapped onto the 
thematic structure, the final stage will require a re-analysis.  
Interactive models (Bates & Mac-Whinney, 1987; MacDonald et al., 1994; Marslen-Wislon & 
Tyler, 1980; Taraban & McClelland, 1988) state that syntactic and semantic processes 
actually interact with each other at an early stage, and both syntax and semantics work 
together to determine the meaning of a sentence. Despite the agreement that syntactic and 
semantic information has to be integrated within a short period of time, the two model 
classes differ in their views on the temporal structure of the integration processes. 
Syntax and semantics are two indispensable properties of sentences. The eye-tracking 
studies (Tanenhaus & Trueswell, 1995) have supported the conclusion that syntax and 
semantics interact during parsing, which denotes that meaning affects early processing. 
These behavioristic experiments have convinced that the interactionist approach (Trueswell 
et al., 1994) is rational and effective to simulate human parsing and semantic understanding 
mechanism. 

 
3.2 The Garden Path Model and Alternatives  
Theories of sentence processing have illustrated various perspectives on when 
comprehenders initiate semantic interpretation of an incoming word. One of the most 
prominent and influential models of sentence processing is the garden path model (Ferreira 
& Clifton, 1986; Frazier & Rayner, 1982; Rayner et al., 1983), which states that semantic 
interpretation generally followes the construction of a syntactic analysis.  
The syntactic analysis applies appropriate syntactic parsing strategy together with 
information of major syntactic category (e.g. noun, verb, adjective, etc.) of incoming words. 
Semantic interpretation can proceed after he construction of a syntactic analysis. The strict 
temporal ordering of syntactic analysis and semantic interpretation produce the fact that 
semantic information cannot influence the construction of a syntactic analysis. The effects of 
semantic information observed during the resolution of syntactic ambiguity have been 
interpreted as reflecting processes occurring after an initial syntactic analysis (Ferreira & 
Clifton, 1986; Kennison, 2001; Speer & Clifton, 1998). 
From the perspective of the garden path theory, the results of the present research can be 
viewed as supporting the claim that certain aspects of high-level integrative semantic 
processing for an incoming word occur only after the comprehender determines the word’s 
syntactic analysis.  
The most prominent alternatives to the garden path model include interactive and 
constraint-based approaches to sentence processing. These approaches stated that language 
comprehension can be achieved through highly interactive and parallel processing 
(MacDonald et al., 1994; Sedivy et al., 1999; Tanenhaus et al., 1995; Taraban & McClelland, 
1988; Trueswell & Tanenhaus, 1994; Trueswell et al., 1993). Word-specific (lexical) 
information will produce candidate syntactic frames, which are activated in parallel. 
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Although semantic interpretations are constructed upon syntactic frames (MacDonald et al., 
1994), semantic information can influence the activation of syntactic frames. As a 
consequence, syntactic and semantic analysis may influence each other. 

 
3.3 The Brain-Based Model 
In the brain-based model (Friederici, 2002), language comprehension is divided into three 
functionally and temporally separable processing steps: (1) initial local structure building in 
the first phase; (2) lexical-semantic and thematic processes in the second phase; and (3) 
syntactic integration and revision in the third phase. For an integrative view of language 
processing, recent brain image research (Friederici & Kotz, 2003) provides support evidence 
that syntax-first aspects take place in an early time window and the interactive aspects 
happen in a later time window.  

 
3.4 Working Memory and Semantic Memory 
An early study (Fodor, 1983) of sentence understanding hypothesized a cognitive 
architecture focusing on a component building grammatical structures of sentence 
processing. Later research works (Caplan & Waters, 1999; Gibson, 1998; Just & Carpenter, 
1992; Zurif et al., 1995) involve various executive resources facilitating sentence processing, 
such as working memory (WM), which contains specific sentence features and acts as 
temporary storage for phrasal information manipulation during the processing of long-
distance syntactic dependencies in a sentence. During the course of sentence processing, 
working memory may help maintain, in a linear or non-linear manner, crucial components 
of a sentence in an active state until the correct grammatical relationships are established 
(Lewis et al., 2006). 
Tulving (1972) first introduced semantic memory (SM), which refers to the general 
knowledge of concepts and facts, including word meaning, and involves encoding and 
retrieval of information in multiple domains (Hart et al., 2007). The essence of semantic 
memory is that contents are not statically bound to any particular instance of experience as 
in episodic memory. Instead, semantic memory stores is the gist of experience, an abstract 
structure applicable to a wide range of experiential objects, and delineates categorical and 
functional relationships between such objects. 

 
4. Simple Recurrent Networks (SRNs) 
 

Hadley (1994) proposed that systematic behavior is a matter of learning and generalization; 
thus, a neural network trained on a limited number of sentences should to be able to process 
all possible sentences in a generalize manner. Moreover, since people learn systematic 
language behavior from exposure to only a small fraction of possible sentences, a neural 
network should similarly be able to learn from a relatively small proportion of possible 
sentences, if it is to be considered cognitively plausible.  
Simple Recurrent Networks (SRNs) (Elman, 1991) has been widely applied in basic 
connectionist approaches (parallel distributed processing) for language learning. SRN has 
been implemented to employ the functions of working memory (MacDonald et al., 2001; 
MacDonald & Christiansen, 2002). 

  

 

The SRN architecture (as illustrated in Fig. 1.) includes the activations from the recurrent 
layer (RL, the hidden layer) as the context layer (CL) in the input layer (IL), aiming at 
processing inputs that consist of sequences of patterns of variable length. This architecture 
allows the network to include information connected with all the previous steps in a 
sequence in its processing of the current stage. The architecture will remember what has 
gone before, forgetting gradually as it progresses through the sequence.  
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Fig.1. Architecture of Simple Recurrent Networks 
 

Symbols Definition 
IU A unit of input layer 
RU A unit of recurrent layer 
CU A unit of context layer 
OU A unit of output layer 
|I| The number of units in IL 
|R| The number of units in RL 
|C| The number of units in CL 
|O| The number of units in OL 
WRI The weight vector from IL to RL 
WRC The weight vector from CL to RL 
WOR The weight vector from RL to OL 

Table 1. Definition of SRN Symbols 
 
Symbols in Fig. 1. are defined in table 1: the first order weight matrices WRI and WOR fully 
connect the units of the input layer (IL) , the recurrent layer (RL) and the output layer (OL) 
respectively, as in the feed forward multilayer perceptron (MLP). The current activities of 
recurrent units RU(t) are fed back through time delay connections to the context layer, which 
is presented as CU(t+1) = RU(t).   
Therefore, each unit in recurrent layer is fed by activities of all recurrent units from previous 
time step through recurrent weight matrix WRC. The context layer, which is composed with 
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connect the units of the input layer (IL) , the recurrent layer (RL) and the output layer (OL) 
respectively, as in the feed forward multilayer perceptron (MLP). The current activities of 
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activities of recurrent units from previous time step, can be viewed as an extension of input 
layer to the recurrent layer. Above working procedure represents the memory of the 
network via holding contextual information from previous time steps. 
The weight matrices RIW , RCW and ORW  are presented as equations (1) to (3) 
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Here, the activation function f applies the logistic sigmoid function (Eq. 8). 
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5. Cognitive Learning with Machine 
 

Most current cognitive models of language processing agree that sentence comprehension 
involves different types of constraints (Jackendoff, 2002) in which syntactic and semantic 
(conceptual) information deserve the most salient consideration.  
From one point of view, separable, independent but partly sequential processes construct 
distinct syntactic and semantic representations of a sentence (Berwick & Weinberg, 1984; 
Ferreira & Clifton, 1986). The opposed view is that syntactic and semantic constraints 
directly and simultaneously interact with each other at the message-level representation of 
the input (Johnson-Laird, 1983; Marslen-Wilson & Tyler, 1987; McClelland et al., 1989).  
There also exist other proposals in between above fully independent and fully interactive 
models. Frazier (1987) suggests that syntactic analysis is autonomous and independent from 
semantic variables in initial stage(s), but is affected by semantic variables at later stage(s); in 
the contrary, syntactic analysis can influence semantic integration from the very beginning 
of processing. Meanwhile, Trueswell et al., (1994) claims that semantic information affects 
and leads syntactic analysis of the utterance in an immediate and direct mannner.  
Abve and several other diverging proposals can be testified by using event-related brain 
potentials (ERPs), measurements of brain activity, which are elicited during the process of 
sentence comprehension. Different reliable ERP components have been employed to prove 
the distinction between the processing of syntactic and semantic information during 
sentence understanding. The extent and type of interaction of ERPs are taken as evidence for 
the interplay occurring between syntactic and semantic analyses during sentence 
comprehension. 
     This section will focus on how syntactic parsing and semantic processing are 
implemented with sentence processing machinery. 

 
5.1 Sentence Parsing 
The processing of syntactic structures plays a critical role in the selective integration of 
lexico-semantic information into sentence meaning. Syntactic analyses are performed in the 
service of semantics, and sentence meaning is derived from syntactic analyses of the 
sentence structures. 
As discussed in section 3.1, the behavior experiments proved that semantics and syntax 
work together in sentence parsing to clarify the meaning. As a conclusion, semantics should 
be assigned an equal prominent role as syntax to improve parsing results. Thus, how to 
incorporate semantics with syntax simultaneously is the dominant challenge in sentence 
parsing. 



Cognitive Learning for Sentence Understanding 335

 

activities of recurrent units from previous time step, can be viewed as an extension of input 
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of processing. Meanwhile, Trueswell et al., (1994) claims that semantic information affects 
and leads syntactic analysis of the utterance in an immediate and direct mannner.  
Abve and several other diverging proposals can be testified by using event-related brain 
potentials (ERPs), measurements of brain activity, which are elicited during the process of 
sentence comprehension. Different reliable ERP components have been employed to prove 
the distinction between the processing of syntactic and semantic information during 
sentence understanding. The extent and type of interaction of ERPs are taken as evidence for 
the interplay occurring between syntactic and semantic analyses during sentence 
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     This section will focus on how syntactic parsing and semantic processing are 
implemented with sentence processing machinery. 

 
5.1 Sentence Parsing 
The processing of syntactic structures plays a critical role in the selective integration of 
lexico-semantic information into sentence meaning. Syntactic analyses are performed in the 
service of semantics, and sentence meaning is derived from syntactic analyses of the 
sentence structures. 
As discussed in section 3.1, the behavior experiments proved that semantics and syntax 
work together in sentence parsing to clarify the meaning. As a conclusion, semantics should 
be assigned an equal prominent role as syntax to improve parsing results. Thus, how to 
incorporate semantics with syntax simultaneously is the dominant challenge in sentence 
parsing. 
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In recent a few years, the research works of natural language processing (NLP) have strived 
toward the elaboration of huge linguistic dictionaries and ontologies (Knight et al., 1995; 
Miller et al., 1990; Sugumaran & Storey, 2002), even including relations between concepts 
and common sense. The exploitation and implementation of such dictionaries and 
ontologies has fulfilled some understanding requirements. 
Kapetanios et al. (2005) proposed to implement the process of parsing natural language 
queries with an ontology, which preserved extensional semantics, such as domain terms, 
operators and operations. Since the context of terms circumscribed by the real-world 
semantics can be expressed by the ontology, it also will alleviate the semantic parsing. 
Context of terms is defined by the interrelationships expressed with an ontology as well as 
by the intentional meaning expressed with annotations.  
Considering the impacts of linguistic dictionaries and ontologies in NLP, our solution for 
interactionist parsing, CIParser, takes WordNet (Miller et al., 1990) as the linguistic 
dictionary, and designs a corresponding ontology, WNOnto (as defined in Guo & Shao 
(2008)), referring to a W3C working draft (van Assem et al., 2006). Since nouns and verbs are 
more dominant in parsing sentences into phrases, they are the word types deliberately 
chosen for semantical analysis with WordNet. Therefore, the design of WNOnto grounds on 
nouns and verbs, which also benefits time efficiency in machine learning and parsing. 
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Fig. 2. Architecture of CIParser 
 
Based on the architecture of SRN (figure 1), our CIParser is designed as illustrated in Fig. 2. 
The left wing is a classical SRN as described in section 4: all the input units in IL are single 
words from original sentences; the activations from RL of the previous time step produce 
the CL for the current stage; the units of IL and CL respectively multiplying matrices of 

RIW and RCW compose the input of RL; the activations of RL multiplying ORW produce the 
input units of OL in current stage.  
All the grammatical information is implicitly preserved in its pattern of link weights. 
Moreover, there are fewer independence assumptions. The SRN itself decides what to pay 

  

 

attention to and what to ignore. Statistical issues, such as combining multiple estimators or 
smoothing for sparse data, are handled in the training procedure. “One-size-fits-all” is a 
common feature of machine learning techniques. 
The right wing is structurally identical as the left wing, except that the input units in IL 
include not only single words from sentences but also individual ontologies, WordOntos, 
produced according to WNOnto with querying results from WordNet. In another word, 
each input unit of IL is composed with (1) a single word and (2) a corresponding ontology 
(only for a noun or verb). Here, any noun or verb has been appended with its semantical 
information from WordNet in the ontology manner.  
The syntactic structure of a natural language sentence is a hierarchical structure, which 
represents how the words connect together to form constituents, such as phrases and even 
clauses. This structure is normally specified with a constituent-tree, in which the 
constituents are nodes or leaves and the hierarchical structure is denoted with parent-child 
relationships. 
In the final processing phase, “Verification and Adjustment of Parsing Results”, the parsing 
results of left and right wings are verified against each other in case that either wing takes 
too long time to deliver a parsing result. In the case of both wings producing parsing results, 
we have followed a selection rule that the tree containing more constituents wins, which has 
been strictly followed in later experiments. The application of phrases to identify structural 
constituents in our CIParser also offers the competence to generalize machine learned 
information across structural constituents. 
As we know that (1) people has language processing constraints in constructions, such as 
center embedding (Chomsky, 1959), and (2) people can only activate a limited number of 
information units in memory at any one time (Miller, 1956), we introduced working 
memory (Baddeley & Susan, 2006) into our CIParser.  Baddeley et al. (2006) defined working 
memory as a limited capacity system for temporary storage and manipulation of 
information for complex tasks such as comprehension, learning and reasoning.  In this paper, 
we add the storage task of working memory to our CIParser to simulate human processing 
features. 
The nature of SRN decides that each new input, a word or/and its ontology, of the network, 
will also be input of the network in a new state, which indicates that information is 
computed through all of these states in every subsequent time period. However, the 
constraints on the depth of center embedding (Chomsky, 1959) implies that a limited 
number of these states will be referred to by following parts of the constituent-tree in any 
given time period.  
In CIParser, we construct a queue with limited length to simulate the active units in human 
memory. When the SRNs arrive at a new state, this state will be queued from head to tail. 
When a new state comes to the queue fully filled with previous network states, the oldest 
state leaves the queue at tail and the new one enters the head. This queue mechanism 
presents that, when the number of states exceeds the queue length, the oldest state will be 
forgotten. This mechanism also helps the CIParser to focus on active states and to achieve 
precise computing results efficiently.  
Guo & Shao (2008) has designed and constructed experiments for training and examining 
CIParser in sentence parsing. The experiments demonstrate that the SRN-based CIParser 
may be used for connectionist language learning with structured output representations. 
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dictionary, and designs a corresponding ontology, WNOnto (as defined in Guo & Shao 
(2008)), referring to a W3C working draft (van Assem et al., 2006). Since nouns and verbs are 
more dominant in parsing sentences into phrases, they are the word types deliberately 
chosen for semantical analysis with WordNet. Therefore, the design of WNOnto grounds on 
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attention to and what to ignore. Statistical issues, such as combining multiple estimators or 
smoothing for sparse data, are handled in the training procedure. “One-size-fits-all” is a 
common feature of machine learning techniques. 
The right wing is structurally identical as the left wing, except that the input units in IL 
include not only single words from sentences but also individual ontologies, WordOntos, 
produced according to WNOnto with querying results from WordNet. In another word, 
each input unit of IL is composed with (1) a single word and (2) a corresponding ontology 
(only for a noun or verb). Here, any noun or verb has been appended with its semantical 
information from WordNet in the ontology manner.  
The syntactic structure of a natural language sentence is a hierarchical structure, which 
represents how the words connect together to form constituents, such as phrases and even 
clauses. This structure is normally specified with a constituent-tree, in which the 
constituents are nodes or leaves and the hierarchical structure is denoted with parent-child 
relationships. 
In the final processing phase, “Verification and Adjustment of Parsing Results”, the parsing 
results of left and right wings are verified against each other in case that either wing takes 
too long time to deliver a parsing result. In the case of both wings producing parsing results, 
we have followed a selection rule that the tree containing more constituents wins, which has 
been strictly followed in later experiments. The application of phrases to identify structural 
constituents in our CIParser also offers the competence to generalize machine learned 
information across structural constituents. 
As we know that (1) people has language processing constraints in constructions, such as 
center embedding (Chomsky, 1959), and (2) people can only activate a limited number of 
information units in memory at any one time (Miller, 1956), we introduced working 
memory (Baddeley & Susan, 2006) into our CIParser.  Baddeley et al. (2006) defined working 
memory as a limited capacity system for temporary storage and manipulation of 
information for complex tasks such as comprehension, learning and reasoning.  In this paper, 
we add the storage task of working memory to our CIParser to simulate human processing 
features. 
The nature of SRN decides that each new input, a word or/and its ontology, of the network, 
will also be input of the network in a new state, which indicates that information is 
computed through all of these states in every subsequent time period. However, the 
constraints on the depth of center embedding (Chomsky, 1959) implies that a limited 
number of these states will be referred to by following parts of the constituent-tree in any 
given time period.  
In CIParser, we construct a queue with limited length to simulate the active units in human 
memory. When the SRNs arrive at a new state, this state will be queued from head to tail. 
When a new state comes to the queue fully filled with previous network states, the oldest 
state leaves the queue at tail and the new one enters the head. This queue mechanism 
presents that, when the number of states exceeds the queue length, the oldest state will be 
forgotten. This mechanism also helps the CIParser to focus on active states and to achieve 
precise computing results efficiently.  
Guo & Shao (2008) has designed and constructed experiments for training and examining 
CIParser in sentence parsing. The experiments demonstrate that the SRN-based CIParser 
may be used for connectionist language learning with structured output representations. 
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The performance of CIParser is evaluated in terms of traditional measures, Precision and 
Recall of constituents with the famous SUSANNE Corpus.  
The experimental results demonstrate that the CIParser has comparability with the state-of-
the-art parsing techniques based on statistical language learning. Guo & Shao (2008) also 
pointed out that (1) thinking of the parsing efficiency, only the semantic information of 
nouns and verbs are considered in current stage; (2) involving other word types (e.g. adverb 
and adjective) will be future research efforts.  

 
5.2 Semantic Processing 
As we know, several knowledge repositories, e.g. WordNet (Miller et al., 1990) and Cyc 
(Lenat, 2006), have been developed to support programs (or agents) to increase the 
intelligence of specified tasks. Meanwhile, other existing repositories are domain dependent 
and only represent information about certain aspects of the domains. 
WordNet, as a linguistic repository, does not have the capability to capture the semantic 
relationships or integrity constraints between concepts. As linguistic repositories lack 
semantic knowledge, query expansion cannot deal with several issues: (1) knowledge 
related to the domain of the query, (2) common sense inferences, or (3) the semantic 
relationships in which the concepts of the query can participate. 
The Cyc ontology is a semantic repository developed to capture and represent common 
sense, but can not represent linguistic relationships of the concepts (e.g. whether two 
concepts are synonyms). Semantic repositories need linguistic knowledge to identify 
relevant concepts from the repository that represent a given term used in the query. Thus, a 
semantic repository, as Cyc, can be extended with linguistic information from the WordNet 
lexicon, and factual information from the World Wide Web. 
In section 5.1, we have illustrated a model for sentence parsing, and we will construct 
another model (as Fig. 3.) for semantic processing in this section. In order to implement 
semantic processing in sentence understanding, we have to consider semantic repositories 
to represent semantic information; the integration of linguistic and semantic information 
could be useful to increase the contexts where knowledge in these repositories can be used 
successfully. 
In step one, each original sentence will be first processed by CIParser to obtain a 
corresponding syntactic structure, e.g. a constituent tree.  In step two, as the sentence is 
processed word by word, open and closed class words are segregated into distinct 
processing streams. The Grammatical Relations Mapping module will integrate constituent 
information for each word or phrase with strict mapping operations.  In step three, the 
Linguistic Relations Construction module constructs linguistic relationships (e.g. synonyms, 
antonyms, hypernyms, and hyponyms) of the concepts in a sentence with referent provided 
by WordNet. In step four, the Semantic Relations Construction module captures the 
semantic relationships or integrity constraints between concepts, so as to successfully deal 
with domain knowledge and common sense inferences. Finally, in step five, all the 
structured data (instances of ontolgy in XML format) from previous processing steps are 
used to fulfill the appropriate components of the meaning structure, the Sentence-Meaning 
Construction Index (SMCI). Obviously, SMCI contains four types, lexical, syntactic, 
grammatical and semantic (or conceptual) of information. 
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Fig. 3. A Computing Model of Semantic Processing for Sentence Understanding 
 
The above model is able to store and retrieve different sentence-meaning construction 
appropriate for different sentences. The requirement is that each individual sentence should 
yield a unique construction index. The construction indices are used in a working memory 
or an associative memory to store and retrieve the correct sentence-meaning construction 
index. 

 
6. Conclusion  
 

This chaper starts with a review of classical and traditional statistical learning approaches. 
As sentence understanding has latent compact connections with human cognition, this 
chaper also highlights relevant cognitive concepts or models in sentence understanding 
domain. Afterwards, this chapter described the completion of sentence understanding task 
from two aspects, sentence parsing and semantic processing, and how cognitive models are 
integrated, with machine learning algorithms (or models), into the procedures of sentence 
parsing and semantic processing.  
The CIParser has been evaluated and proven comparablr with the state-of-the-art parsing 
techniques based on statistical language learning. Another computing model of Semantic 
Processing for Sentence Understanding (Fig. 3.) also has been constructed to deliver 
Sentence-Meaning Construction Index (SMCI) for each sentence. With SMCI, a sentence can 
be understood in four dimensions, which are lexical, syntactic, grammatical and semantic 
(or conceptual) dimensions. 
Cognitive learning with machines for sentence understanding has just started with minor 
productions, in which our works took SRNs as an initial model of artificial neural networks.  
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Cognitive learning with machines for sentence understanding has just started with minor 
productions, in which our works took SRNs as an initial model of artificial neural networks.  
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In an artificial language learning task (next-word prediction), van der Velde et al. (2004) 
evaluated a simple recurrent network (SRN) and claimed that the SRN failed to process 
novel sentences appropriately, for example, by correctly distinguishing between nouns and 
verbs. However, Frank (2006) extended above simulations and showed that, although 
limitations had arisen from overfitting in large networks (van der Velde et al., 2004), an 
identical SRN still can display some generalization performance in the condition that the 
lexicon size was increased properly. Moreover, Frank (2006) demonstrated that 
generalization could be further improved by employing the echo-state network (ESN) 
(Jaeger, 2003), an alternative network that requires less training (due to fixed input and 
recurrent weights) and is less prone to overfitting.  
Recurrent Self-Organizing Networks (RSON) (Farkaš & Crocker, 2006), coupled with two 
types of a single-layer prediction module, had demonstrated salient benefit in learning 
temporal context representations. In the task of next-word prediction, RSON achieved the 
best performance, which turned out to be more robust and faster to train than SRN and 
higher prediction accuracy than ESN. As a conclusiong, further investigation will take ESN 
and RSON as neural network models, and we believe that comparison and evalation works 
among SRNs, ESNs, and RSONs are also venturing and promising directions. 
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In an artificial language learning task (next-word prediction), van der Velde et al. (2004) 
evaluated a simple recurrent network (SRN) and claimed that the SRN failed to process 
novel sentences appropriately, for example, by correctly distinguishing between nouns and 
verbs. However, Frank (2006) extended above simulations and showed that, although 
limitations had arisen from overfitting in large networks (van der Velde et al., 2004), an 
identical SRN still can display some generalization performance in the condition that the 
lexicon size was increased properly. Moreover, Frank (2006) demonstrated that 
generalization could be further improved by employing the echo-state network (ESN) 
(Jaeger, 2003), an alternative network that requires less training (due to fixed input and 
recurrent weights) and is less prone to overfitting.  
Recurrent Self-Organizing Networks (RSON) (Farkaš & Crocker, 2006), coupled with two 
types of a single-layer prediction module, had demonstrated salient benefit in learning 
temporal context representations. In the task of next-word prediction, RSON achieved the 
best performance, which turned out to be more robust and faster to train than SRN and 
higher prediction accuracy than ESN. As a conclusiong, further investigation will take ESN 
and RSON as neural network models, and we believe that comparison and evalation works 
among SRNs, ESNs, and RSONs are also venturing and promising directions. 
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1. Introduction     

The principle significance of an artificial neural network is that it learns and improves 
through that learning. The definition of the learning process in neural networks is of great 
importance. The neural network is stimulated and regarding to these stimulations the free 
parameters of the network change in its internal structure. As a result the neural network 
replies in a new way. Based on a basic learning algorithm namely Hebbian learning, a 
solution to the problem of resolving uncertainty areas in diffusion tensor magnetic 
resonance image (DTMRI) analysis is represented. Diffusion tensor imaging (DTI) is a 
developing and promising medical imaging modality allowing the determination of in-vivo 
tissue properties noninvasively upon the random movement of the water molecules. The 
method is unique in its ability being a noninvasive modality which is a great opportunity to 
explore various white matter pathologies and healthy brain mapping for neuroanatomy 
research. In neuroscience applications DTI is mostly used addressing brain’s fiber 
tractography, reconstructing the connectivity map. Clinical evaluation of fiber tracking 
results is a major problem in the field. Noise, partial volume effects, inefficiency of 
numerical implementations by reconstructing the intersecting tracts are some of the reasons 
for the need of standardized fiber tract atlas. Also misregistration caused by eddy currents, 
ghosting due to motion artifacts, and signal loss due to susceptibility variations may all 
affect the calculated tractography results.  
The proposed method based on the Hebbian learning provides an instance of non-
supervised and competitive learning in a neurobiological aspect as a solution to the tracking 
problem of the intersecting axonal structures. The main contribution of the study is to 
describe a tracking approach via a special class of artificial neural networks namely the 
Hebbian learning with improved reliability.  

 
2. Diffusion tensor imaging    

Essential concepts necessary to understand DTMRI are explained in this section. The utility 
of the diffusion tensor is that it provides the direction in three dimensional space in which 
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the rate of diffusion is greatest (Basser et al., 2000). The developing imaging modality is 
almost a routine MR technique analyzing tissue anisotropy characteristics, connectivity and 
alterations of human brain neural tracts.  
The discrete diffusion tensor and diffusivity trajectory estimation between neighboring 
image pixels are used to trace out the fiber pathways namely the tracts. The process of 
determining the neural tracts especially white matter structures by diffusion tensor analysis 
is commonly known as tractography. Fiber tractography is able to provide both quantitative 
and qualitative information aiming to clarify the anatomical architecture of brain’s fibers 
and advance our knowledge of fiber connectivity maps (Ding et al., 2003). There are some 
limiting cases in DTI analysis and fiber tracking. One of the critical problems in estimating 
these brain maps is the existence of intersecting tracts within the tissue. As a consequence of 
this fact, axonal structures in the image voxels with more than one diffusivity direction can 
not be clearly defined, where the generally the diffusion tensor model becomes inaccurate to 
define the uncertainties (Bammer, 2003;  Ciccarelli et al., 2003).  
Current researchs are involved in multi-tensor mixture models (Tuch et al., 2002) and higher 
order tensor models (Basser et al., 1994; Basser, 2002). Some techniques such as q-space 
imaging (Callaghan et al. 1988; Basser, 2002), and high angular resolution diffusion imaging 
(Frank, 2002; Tuch et al., 2002) are enhanced in resolving such multidiffusivities within a 
voxel. Jones employed the so called “cone of uncertainty” as a construction method where 
the tensor’s principal eigenvector has a confidence interval in which one helps to define the 
uncertainty regions as a cone with a probability distribution instead of a discrete diffusivity 
determination (Jones, 2003). In spite of having some proposed methods for determination of 
the intersecting diffusivities (Westin et al., 1999; Pajevic & Pierpaoli, 2000; Poupon et al., 
2000; Tuch et al., 2002), still the connection is not precisely defined, and there isn’t any gold 
standard yet (Westin et al., 1999; LeBihan et al., 2006). So depending on the proposed 
Hebbian learning rule approach, we aim to clarify the tracts in the intersections in order to 
eliminate the uncertainty. 

3.1 Diffusion tensor theory 
Diffusion weighted images are the raw data source for the calculation of the diffusion tensor 
measured using the Stejskal-Tanner equation (Basser & LeBihan, 1992; Basser et al., 1994), 
where |g| is the strength of the diffusion gradient pulses, S0 is the RF signal received for a 
measurement without diffusion gradient pulses, and Si is the signal received with diffusion 
gradient pulses. The diffusion tensor D is gained by systematically application of the 
diffusion weighted gradients in multiple directions. The mathematical expression D is a real, 
symmetric second order tensor, represented in matrix form as a real, symmetric 3x3 matrix 
(Eq. 1). 
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Getting the six unique elements of the diffusion tensor D requires at least six diffusion 
weighted measurements in non-collinear measurement directions g along with a non-
diffusion-weighted measurement S0 based on the three-dimensional Gaussian Stejskal-

Tanner model (Eq.2). The linear system of n ≥ 6 diffusion weighted measurements 
constraining the diffusion tensor D may be represented in matrix form (Basser, 2002). 
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In the linear system of equations Ad = s of equation 2, A is the encoding matrix containing 
the n ≥ 6 unit normalized gradient measurement directions, d is a vector specifying the 6 
unique elements of the diffusion tensor D (Eq.3), and s is a vector containing natural 
logarithmic scaled RF signal loss resulting from the Brownian motion of spins (Berg, 1983). 
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Diagonalization of the diffusion tensor yields its eigensystem with its eigenvectors and 
eigenvalues 1, 2, 3 listed in decreasing order. The eigensystem of D is calculated in every 
pixel for DT analysis. Different research groups have studied mathematical explanations of 
the diffusion tensor (Lori et al., 2002; Ciccarelli et al., 2003; Khader & Narayana, 2003). The 
scalar diffusion tensor eigenvalues and their derivatives defining the anisotropy values are 
correlated to the underlying tissue in the region of interest (ROI). The directional 
eigenvectors are relevant to the anisotropy spatially and orientationally (Pierpaoli et al., 
2002). The largest eigenvector actually corresponds to the major molecular motion of water 
indicating the principal orientation of the analyzed axonal structures. Most of the diffusion 
tensor analyses rely in assigning the major eigenvector as the direction of the largest water 
diffusion called the principal diffusivity for reconstructing the 3D trajectories of human 
brain fiber bundles (Westin et al., 1999; Basser et al., 2000; Poupon et al., 2000; Khader et al., 
2003; Taylor et al., 2004). The approach is adopted in our implementation too. Using the 
computational diagonalization the eigensystem of the 3 by 3 symmetric D is achieved 
(Borisenko & Tarapov, 1979; Szafer et al., 1995; Göksel & Özkan, 2006). The eigenvectors ei 
and the corresponding eigenvalues i are the solutions of the equation (5), where the 
eigenvectors ei  (Eq. 4) are the principal diffusion directions (i = 1, 2, 3).  
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the rate of diffusion is greatest (Basser et al., 2000). The developing imaging modality is 
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alterations of human brain neural tracts.  
The discrete diffusion tensor and diffusivity trajectory estimation between neighboring 
image pixels are used to trace out the fiber pathways namely the tracts. The process of 
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and qualitative information aiming to clarify the anatomical architecture of brain’s fibers 
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determination (Jones, 2003). In spite of having some proposed methods for determination of 
the intersecting diffusivities (Westin et al., 1999; Pajevic & Pierpaoli, 2000; Poupon et al., 
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standard yet (Westin et al., 1999; LeBihan et al., 2006). So depending on the proposed 
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3.1 Diffusion tensor theory 
Diffusion weighted images are the raw data source for the calculation of the diffusion tensor 
measured using the Stejskal-Tanner equation (Basser & LeBihan, 1992; Basser et al., 1994), 
where |g| is the strength of the diffusion gradient pulses, S0 is the RF signal received for a 
measurement without diffusion gradient pulses, and Si is the signal received with diffusion 
gradient pulses. The diffusion tensor D is gained by systematically application of the 
diffusion weighted gradients in multiple directions. The mathematical expression D is a real, 
symmetric second order tensor, represented in matrix form as a real, symmetric 3x3 matrix 
(Eq. 1). 
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logarithmic scaled RF signal loss resulting from the Brownian motion of spins (Berg, 1983). 
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The calculated eigenvectors are ordered descending, and an ordered orthogonal basis with 
the first eigenvector having the direction of largest variance of the data is created (Goksel & 
Ozkan, 2006). In our sample, this leads to the principal diffusivity, and so the most 
appropriate diffusivity directions can be determined (Borisenko & Tarapov, 1979). The first 
principal component 1 has maximum variance, and thus its weighting coefficients give the 
direction of the maximum diffusion weighted signal, or largest principal diffusivity (Basser 
et al., 2000). The weighting coefficients of the second and third principal components 2 and 
3 give the directions of the intermediate and smallest principal diffusivity respectively. 
Estimating the fiber tract maps follow the implementation of the selected post processing 
methods, in this study the Hebbian learning rule, to resolve the related eigensystem. To 
begin the tracking process, generally a starting pixel also called a seed point is selected to 
focus on the desired region of interest and to avoid calculation overload in consideration of 
working on the whole brain DTMR data. Starting at the seed point coordinates, similar fiber 
orientation vectors are traced out upon a predefined similarity constraint until the selected 
ROI is fully covered. Specific tracts related to the investigated ROIs can be visualized by 
choosing the regions/seed points according to anatomical structures picked on the brain 
atlas where the selection can be made either on segmented DT brain map or unsegmented 
and full brain volume.  

3. Hebbian learning for pattern association 

3.1 Hebb’s hypothesis 
Hebb’s rule is the earliest and the simplest of the learning rules for a neural network. The 
basic neural net model provides knowledge about the synaptic modifications and learning 
procedure between nodes in a pattern. The technique relies in representing the activity 
between correlated nodes according to their related weighting. The Organization of 
Behavior is expressed by Donald Hebb (1949) as: ``When the axon of cell A is near enough to 
excite a cell B and repeatedly or persistently takes part in firing it, some growth process or 
metabolic change takes place in one or both cells such that A's efficiency, as one of the cells 
firing B, is increased''. This Hebbian learning rule is used to store patterns in artificial neural 
network models of associative memory. The Hebb’s postulate of learning implies both 
temporal and spatial constraints on learning. 
The ability of the Hebb’s rule to determine the weights for the correct output related to all 
the training pattern is influenced by three factors. One is the existence of such weights. 
Linear independency is a must to provide the existence of the weights. The second factor is 
the correlation factor. The quality of the resulting weight matrix of the Hebbian learning 
depends on the orthogonality of the input vectors. Finally, the weights of the Hebb’s process 
represent the simultaneous activation of the stimulated nodes unit by unit, which lead the 
rule make also called correlation training or encoding (Fausett, 1994). The rule is sometimes 
called the activity product rule also, because of the correlational characteristic of Hebb’s 
hypothesis.  
The idea selecting the Hebbian learning to resolve the uncertainty problem in diffusion 
tensor tractography (DTT) relies in the proficiency of the neural networks as classifiers 
especially in non-linear real world problems. The Hebbian learning algorithm is performed 
locally, which makes the application a plausible theory for biological learning methods. That 
is also making Hebbian learning process ideal in DTT.  

In this study, the input pattern is actually the eigensystem defining the principal diffusivity 
of the fibers in DTMRI. As previously mentioned, the learning theory of Hebb relies in the 
increase of the weights between neighboring nodes by simultaneous activation. In other 
words, the weights between the nodes of the input pattern in Hebbian learning are 
representing the relationship between these nodes. The modification of the weights and the 
implementation will be explained in the next subtitles. 

3.2 Mathematical model of Hebb’s rule 
The formulation of the Hebbian learning follows with a synaptic weight wkj of neuron k with 
F a function of both input signal xj and output signal yk (Haykin, 1999): 

 ))(),(()( nxnyFnw jkkj   (6) 

The Hebb’s formula has many forms, the simplest form expressed with the weight 
modification is given as (Haykin, 1999): 
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The synaptic adjustment kjw  is applied to the synaptic weight vector kjw  at time step n 

with a learning rate parameter . This proceeds from one step in the learning algorithm to 
another. 
 

 
Fig. 1. The principal of the Hebbian learning: The activation function with a threshold  is 
defining the output in other words activated, allowed vectors of the examined pattern 
 
Generally, modification of a weight wij from an excited neuron xi to a destination neuron yj 
having a learning rate , the Hebb’s learning rule is defined formally as in Eq.(7) and 
expressed graphically as in Fig.1. Correlated nodes will have strong negative or positive 
weights regarding to their tendency being opposite or not, where uncorrelated nodes will 
have weights near zero. As a result, a neuron map is obtained with weights encoding the 
stationary probability density function of the input pattern vectors (Haykin, 1999). The 
procedure is an instance of unsupervised and competitive learning process. The advantages 
of the procedure is that it is a local learning rule, simple with very little computational 
requirement and biological plausibility. 
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The calculated eigenvectors are ordered descending, and an ordered orthogonal basis with 
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Ozkan, 2006). In our sample, this leads to the principal diffusivity, and so the most 
appropriate diffusivity directions can be determined (Borisenko & Tarapov, 1979). The first 
principal component 1 has maximum variance, and thus its weighting coefficients give the 
direction of the maximum diffusion weighted signal, or largest principal diffusivity (Basser 
et al., 2000). The weighting coefficients of the second and third principal components 2 and 
3 give the directions of the intermediate and smallest principal diffusivity respectively. 
Estimating the fiber tract maps follow the implementation of the selected post processing 
methods, in this study the Hebbian learning rule, to resolve the related eigensystem. To 
begin the tracking process, generally a starting pixel also called a seed point is selected to 
focus on the desired region of interest and to avoid calculation overload in consideration of 
working on the whole brain DTMR data. Starting at the seed point coordinates, similar fiber 
orientation vectors are traced out upon a predefined similarity constraint until the selected 
ROI is fully covered. Specific tracts related to the investigated ROIs can be visualized by 
choosing the regions/seed points according to anatomical structures picked on the brain 
atlas where the selection can be made either on segmented DT brain map or unsegmented 
and full brain volume.  

3. Hebbian learning for pattern association 

3.1 Hebb’s hypothesis 
Hebb’s rule is the earliest and the simplest of the learning rules for a neural network. The 
basic neural net model provides knowledge about the synaptic modifications and learning 
procedure between nodes in a pattern. The technique relies in representing the activity 
between correlated nodes according to their related weighting. The Organization of 
Behavior is expressed by Donald Hebb (1949) as: ``When the axon of cell A is near enough to 
excite a cell B and repeatedly or persistently takes part in firing it, some growth process or 
metabolic change takes place in one or both cells such that A's efficiency, as one of the cells 
firing B, is increased''. This Hebbian learning rule is used to store patterns in artificial neural 
network models of associative memory. The Hebb’s postulate of learning implies both 
temporal and spatial constraints on learning. 
The ability of the Hebb’s rule to determine the weights for the correct output related to all 
the training pattern is influenced by three factors. One is the existence of such weights. 
Linear independency is a must to provide the existence of the weights. The second factor is 
the correlation factor. The quality of the resulting weight matrix of the Hebbian learning 
depends on the orthogonality of the input vectors. Finally, the weights of the Hebb’s process 
represent the simultaneous activation of the stimulated nodes unit by unit, which lead the 
rule make also called correlation training or encoding (Fausett, 1994). The rule is sometimes 
called the activity product rule also, because of the correlational characteristic of Hebb’s 
hypothesis.  
The idea selecting the Hebbian learning to resolve the uncertainty problem in diffusion 
tensor tractography (DTT) relies in the proficiency of the neural networks as classifiers 
especially in non-linear real world problems. The Hebbian learning algorithm is performed 
locally, which makes the application a plausible theory for biological learning methods. That 
is also making Hebbian learning process ideal in DTT.  

In this study, the input pattern is actually the eigensystem defining the principal diffusivity 
of the fibers in DTMRI. As previously mentioned, the learning theory of Hebb relies in the 
increase of the weights between neighboring nodes by simultaneous activation. In other 
words, the weights between the nodes of the input pattern in Hebbian learning are 
representing the relationship between these nodes. The modification of the weights and the 
implementation will be explained in the next subtitles. 
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The formulation of the Hebbian learning follows with a synaptic weight wkj of neuron k with 
F a function of both input signal xj and output signal yk (Haykin, 1999): 
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The Hebb’s formula has many forms, the simplest form expressed with the weight 
modification is given as (Haykin, 1999): 
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The synaptic adjustment kjw  is applied to the synaptic weight vector kjw  at time step n 
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another. 
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having a learning rate , the Hebb’s learning rule is defined formally as in Eq.(7) and 
expressed graphically as in Fig.1. Correlated nodes will have strong negative or positive 
weights regarding to their tendency being opposite or not, where uncorrelated nodes will 
have weights near zero. As a result, a neuron map is obtained with weights encoding the 
stationary probability density function of the input pattern vectors (Haykin, 1999). The 
procedure is an instance of unsupervised and competitive learning process. The advantages 
of the procedure is that it is a local learning rule, simple with very little computational 
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As a basis of the proposed Hebbian method, independent component analysis (ICA) is 
applied to solve the intersecting fiber problem in DTT literature (Arfanakis et al., 2002; 
Sungheon et al., 2005; Jeong-Won & Singh, 2006). The application has provided useful 
information about the diffusion properties of brain structures without estimation of the 
diffusion tensor. But ICA should not be considered as a fiber tracking method. The 
technique maps structures. The advantage is that it may be used for visualization of 
particular structures without any user specific a priori information. Relying on the 
successful implementation of the ICA method in the literature, the basic Hebbian learning is 
proposed for the post processing of the diffusion weighted MR images. 

3.3 The Hebbian rule in DTI 
The fiber directions in living tissue should be compared carefully, thus simulation studies 
are done addressing verification and validation of the analysis. By generating the algorithm, 
first all the weights wi=0 (i=1,…,n) are initialized. For each input training vector, the input 
units and the output unit are activated, while new weights are adjusted regarding Eq.(7). 
The weight modification kjw follows until the ROI is covered according to the predefined 
constraints. 
Our approach relies in the assumption that the axon follows a unique path. Each element in 
the Hebbian input pattern represents a voxel in the ROI, and each voxel is related with its 
neighboring voxels. To clarify the idea and the implementation steps, a sample synthetic 
fiber tract ROI with its eigenvectors in every pixel is given in Fig.2: 
 

 
Fig. 2. A segment of synthetic fiber tract pattern illustrating the diffusion tensor orientations 
in each pixel with computed eigenvectors.  
 
The seed point in Fig.2 is the voxel with the coordinate (4,2). The 8 neighboring nodes of the 
starting point are first investigated and in each step the weight is been updated. For the 
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same sample, Gaussian noise is added to the pattern, and again weights are updated 
starting from the same seed point. As a result, the Hebb rule defines the green path as the 
winning path (Fig.3). Depending on the threshold function varying branches can be 
determined for the same ROI (Fig.4). For simulation studies various threshold functions are 
selected to verify the algorithm, and to define the simulated paths more precisely. In living 
tissue, the selection of the threshold constraint is depending actually on the human brain 
atlas and anatomical structure knowledge.  
 

 
Fig. 3. The green branching path represents the winning tracts estimated by Hebb’s learning 
 

 
Fig. 4. For the same ROI, changing the threshold function results a non-branching trajectory 
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diffusion tensor. But ICA should not be considered as a fiber tracking method. The 
technique maps structures. The advantage is that it may be used for visualization of 
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successful implementation of the ICA method in the literature, the basic Hebbian learning is 
proposed for the post processing of the diffusion weighted MR images. 

3.3 The Hebbian rule in DTI 
The fiber directions in living tissue should be compared carefully, thus simulation studies 
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units and the output unit are activated, while new weights are adjusted regarding Eq.(7). 
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Our approach relies in the assumption that the axon follows a unique path. Each element in 
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same sample, Gaussian noise is added to the pattern, and again weights are updated 
starting from the same seed point. As a result, the Hebb rule defines the green path as the 
winning path (Fig.3). Depending on the threshold function varying branches can be 
determined for the same ROI (Fig.4). For simulation studies various threshold functions are 
selected to verify the algorithm, and to define the simulated paths more precisely. In living 
tissue, the selection of the threshold constraint is depending actually on the human brain 
atlas and anatomical structure knowledge.  
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The real data sets of brain diffusion MR images are used for the validation of the 
algorithm. The starting point and the activation function’s threshold are selected upon the 
knowledge of white matter fiber atlas and the most common pathology regions in the 
literature.   
 

 
Fig. 5. Eigenvectors of the whole slice is represented on the registered anatomic MR image. 
The manually executed seed point selection is seen on the figure. 
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Fig. 6. Implementation of the algorithm at the starting point shown in Fig. 5 with a threshold 
function 1 allowing a wide range of neighbors as winning nodes results the represented 
axial slice registered with the anatomic MR image 

 
Fig. 7. Implementation of the algorithm with an activation function having a threshold 2 
allowing a limited number of neighbors of the seed point shown in Fig. 5 as winning nodes 

4. Discussion 

The special class of artificial neural networks namely Hebbian learning is proposed for the 
analysis of a relatively new 3D imaging technique DTMRI’s raw data. One of the major 
problems in DTI literature is the absence of a gold standard in fiber tractography. 
Intersections of two or more fiber tracts yield to erroneous estimates of the diffusivity and 
the fiber orientation. The anatomical fiber maps determined by diffusion tensor analysis are 
having still an unclear accuracy because of the inefficiency of the tensor model used to 
define the uncertainty regions such as crossing diffusivities in a single voxel. The practical 
accuracy of DT analysis and tractography vary upon the limitations of data quality and 
signal-to-noise ratio (SNR) (Mangin et al., 2002). In this proposed study the critical 
uncertainty problem is tried to be eliminated by adequate analysis tool. The method is first 
implemented on synthetic tract pattern (Fig. 2). The weight modifications yield to determine 
the weighted connections between the neighboring pixels (Fig. 3). The application results 
give promising tract estimations (Fig. 4) based on the threshold determination of the 
activation functions. Some real data analyses are done as represented in the implementation 
section 3.3 in Fig. 6 and Fig. 7. Still the proposed rule has to be implemented on 3D brain 
volume for validation studies. 
Post processing reconstruction can reduce the sensitivity of tractography, so in Hebb 
application automated mapping and tracking after seed point selection is achieved and 
the method relies in basic learning algorithm which is quite an accepted procedure in 
defining the anatomical brain mapping. The applicability of the Hebbian rule to the 
uncertainty problem is verified by examining the updated weight changes by defining a 
fiber path. 
The assumptions made in the determination of the diffusion tensor analysis are of great 
importance because the error tolerance and the general limitations of all the sequent 
applications including tractography are highly dependent on these. 
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The real data sets of brain diffusion MR images are used for the validation of the 
algorithm. The starting point and the activation function’s threshold are selected upon the 
knowledge of white matter fiber atlas and the most common pathology regions in the 
literature.   
 

 
Fig. 5. Eigenvectors of the whole slice is represented on the registered anatomic MR image. 
The manually executed seed point selection is seen on the figure. 
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Fig. 6. Implementation of the algorithm at the starting point shown in Fig. 5 with a threshold 
function 1 allowing a wide range of neighbors as winning nodes results the represented 
axial slice registered with the anatomic MR image 

 
Fig. 7. Implementation of the algorithm with an activation function having a threshold 2 
allowing a limited number of neighbors of the seed point shown in Fig. 5 as winning nodes 

4. Discussion 

The special class of artificial neural networks namely Hebbian learning is proposed for the 
analysis of a relatively new 3D imaging technique DTMRI’s raw data. One of the major 
problems in DTI literature is the absence of a gold standard in fiber tractography. 
Intersections of two or more fiber tracts yield to erroneous estimates of the diffusivity and 
the fiber orientation. The anatomical fiber maps determined by diffusion tensor analysis are 
having still an unclear accuracy because of the inefficiency of the tensor model used to 
define the uncertainty regions such as crossing diffusivities in a single voxel. The practical 
accuracy of DT analysis and tractography vary upon the limitations of data quality and 
signal-to-noise ratio (SNR) (Mangin et al., 2002). In this proposed study the critical 
uncertainty problem is tried to be eliminated by adequate analysis tool. The method is first 
implemented on synthetic tract pattern (Fig. 2). The weight modifications yield to determine 
the weighted connections between the neighboring pixels (Fig. 3). The application results 
give promising tract estimations (Fig. 4) based on the threshold determination of the 
activation functions. Some real data analyses are done as represented in the implementation 
section 3.3 in Fig. 6 and Fig. 7. Still the proposed rule has to be implemented on 3D brain 
volume for validation studies. 
Post processing reconstruction can reduce the sensitivity of tractography, so in Hebb 
application automated mapping and tracking after seed point selection is achieved and 
the method relies in basic learning algorithm which is quite an accepted procedure in 
defining the anatomical brain mapping. The applicability of the Hebbian rule to the 
uncertainty problem is verified by examining the updated weight changes by defining a 
fiber path. 
The assumptions made in the determination of the diffusion tensor analysis are of great 
importance because the error tolerance and the general limitations of all the sequent 
applications including tractography are highly dependent on these. 
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5. Conclusion 

Diffusion tensor imaging analysis and related tractography is highly promising for the 
detection and identification of brain fiber tracts especially the white matter paths. The 
implementation is helpful for better understanding of anatomical and pathological brain 
maps, the neural connectivity, neuropsychiatric diseases and the neural circuitry. The 
diffusion anisotropy in biological tissues still needs clarification on the fundamentals of its 
mechanisms. DTI is able to locate the intersecting fiber tracts but poor in identifying them, 
therefore post processing methods are of great importance (Lee, 2005; LeBihan, 2006).  To 
solve the determination and visualization problems of fiber tracking especially in 
uncertainty regions, methods should be developed. The applied algorithm based on 
Hebbian learning is proposed to eliminate this uncertainty in intersecting pixels, and to 
define the fiber paths more secure and precisely upon the updated weightings. 
The choice of training patterns plays a significant role in implementing the Hebb rule. The 
Hebbian approach aims basically the elimination of the impairment of the tensor modeling 
and the correlation of the brain fiber mapping to artificial neural network. The proposed 
method shows promising results to modify the fiber tractography and estimate the voxel 
diffusivity and neural map. The study must be accomplished in 3D human DTT. The 
assumptions made during the analysis need to be updated with a radiologist not to miss the 
clinical needs and to eliminate erroneous pathological approaches. Also engineering and 
clinical views should be obtained on the tractography results and these should be verified 
with brain atlases. The currently promising Hebb’s rule will then be a qualified tool in 
DTMR analysis. Besides post processing enhancements, improvements will also be made 
with the development of faster sequences and higher field imaging.  
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5. Conclusion 

Diffusion tensor imaging analysis and related tractography is highly promising for the 
detection and identification of brain fiber tracts especially the white matter paths. The 
implementation is helpful for better understanding of anatomical and pathological brain 
maps, the neural connectivity, neuropsychiatric diseases and the neural circuitry. The 
diffusion anisotropy in biological tissues still needs clarification on the fundamentals of its 
mechanisms. DTI is able to locate the intersecting fiber tracts but poor in identifying them, 
therefore post processing methods are of great importance (Lee, 2005; LeBihan, 2006).  To 
solve the determination and visualization problems of fiber tracking especially in 
uncertainty regions, methods should be developed. The applied algorithm based on 
Hebbian learning is proposed to eliminate this uncertainty in intersecting pixels, and to 
define the fiber paths more secure and precisely upon the updated weightings. 
The choice of training patterns plays a significant role in implementing the Hebb rule. The 
Hebbian approach aims basically the elimination of the impairment of the tensor modeling 
and the correlation of the brain fiber mapping to artificial neural network. The proposed 
method shows promising results to modify the fiber tractography and estimate the voxel 
diffusivity and neural map. The study must be accomplished in 3D human DTT. The 
assumptions made during the analysis need to be updated with a radiologist not to miss the 
clinical needs and to eliminate erroneous pathological approaches. Also engineering and 
clinical views should be obtained on the tractography results and these should be verified 
with brain atlases. The currently promising Hebb’s rule will then be a qualified tool in 
DTMR analysis. Besides post processing enhancements, improvements will also be made 
with the development of faster sequences and higher field imaging.  
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1. Introduction 

In this chapter, we introduce profit sharing method (Grefenstette, 1988) (Miyazaki et al., 
1994a) which is a reinforcement learning method. Profit sharing can work well on the 
partially observable Markov decision process (POMDP) where a learning agent cannot 
distinguish an observation between states which need another action, because it is a typical 
non-bootstrap method, and its Q-value is usually handled accumulatively. So we study 
profit sharing as the next generation reinforcement learning system. First we discuss how to 
assign the credit to a rule on POMDP. The conventional reinforcement function of profit 
sharing does not consider POMDP. So we propose a novel credit assignment which 
considers the condition of the reward distribution on POMDP. Secondly, we discuss the 
probabilistic state transition on MDP. Profit sharing does not work well on the probabilistic 
state transition. We propose a novel learning method which considers the probabilistic state 
transition. It is similar to the Monte Carlo method. We therefore discuss the Q-values of our 
proposed method. In an environment with deterministic state transitions, we show the same 
performance for both conventional profit sharing and the proposed method. We also show 
the good performance of the proposed method against the conventional profit sharing. 
In this chapter, we discuss the learning in POMDP and the probabilistic state transition. We 
show the advantages and disadvantages of the profit sharing method. We propose a novel 
learning method which has the same advantages and solves the disadvantages. 
We propose how to handle the Q-values in an action-selection. Section 2 introduces the 
conventional reinforcement learning methods and profit sharing method. We propose the 
novel learning method in Section 3. Section 4 shows the results and finally Section 5 
concludes this chapter. 

2. Reinforcement learning system 

In a reinforcement learning system (Sutton, 1990), a learning agent gets a reward if and only 
if it reaches the goal state. An agent learns a better policy by repeated trial and error. We just 
describe the goal condition, so an agent must learn how to go from the start state to the goal 
state by the interaction between an agent and an environment. At time t, an agent observes 
the observation ot at the state st, and selects an action at by the policy. After selecting the 
action at, the environment will change from the state st to the next state st+1. When the next 
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state st+1 is the goal state, the agent gets the reward rt+1, and if the next state st+1 is not the 
goal state, the reward rt+1 will be equal to 0, or less than 0 which means the penalty. 
In Markov decision process (MDP) (Sutton, 1990), the probability Pst,st+1, which is the state 
transition probability from the state st to the state st+1 by the action at, is decided by only the 
state st and the action at. If an agent cannot get the all of the state, then some other states are 
observed with the same observation. We call this a partially observable Markov decision 
process (POMDP) (Miyazaki et. al, 1998) (Whitehead & Balland, 1990). In a POMDP 
environment, an agent must select two or more actions at the same observation. 

2.1 Q-learning 
We introduce Q-learning (Watkins & Dayan, 1992) which estimate the rule’s value as a Q-
value. The Q-value means the expected return which is updated as follow: 
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where   is the learning rate, and γ is the discount rate. After many trials, Q-value will reach 
the estimate value of its rule. Thus, an agent selects the rule which has the highest Q-value 
of its state in order to get the optimal policy. Using Q-learning, an agent can update Q-value 
per action-selection without the reward. We call this on-line updating. Thus we can set the 
any value as initial Q-value. We call this optimistic initial value. 
In a POMDP environment the combination of Q(ot,at) and Q(ot+1,at+1) is effected by alias 
problems, where the observation ot and ot+1 means the observation at the state st and st+1 
respectively, so Q-value cannot reach the optimal value. For example, Q(o1,a1) has the high-
value at the state s1, on the other hand Q(o1,a1) has the low-value at the state s2, then Q(o1,a1) 
has no aim.  

2.2 Profit sharing 
In this section, we introduce profit sharing (Grefenstette, 1988) (Miyazaki et. al, 1994a) 
(Miyazaki et. al, 1994b) which is a reinforcement learning method. A profit sharing method 
has some advantages over other learning methods which mean that it can learn in MDP and 
also POMDP environments. In profit sharing, the agent distributes the reward to the 
selected rules (called an episode) when it reaches the goal state. The distributed function f(x) 
is called a reinforcement function, and in MDP (Miyazaki et. al, 1994a) (Miyazaki et. al, 
1994b) it should be formed by 
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where C is the maximum number of conflicting effective rules, and W is the maximum 
length of episodes. We usually use the reinforcement function that implements Equation 2 
as follow: 

 xLxf /1)(  , (3) 
where x is the number of steps from the goal state, and L is the number of actions at each 
state.  

3. Novel profit sharing  

3.1 Reward distribution in a POMDP 
Profit sharing uses the estimate value of rules in selecting rules. The estimate value does not 
be correct value when an aliasing observation confuses the agent observation capability. The 
conventional reinforcement function of profit sharing has this problem. The reinforcement 
of profit sharing is expressed by 

 )(),(),( xfraoao xxxx  , (4) 

where ox is the observation from the state sx. In Equation 4, there is no problem because 
profit sharing does not use the relationship between observations. Profit sharing does not 
correctly estimate rules if and only if a rule (ox,ax) is equal to a rule (ox',ax'), a state sx is not 
equal to a state sx', and an action ax is not equal to an action ax'. We discuss this case. 
The case of the problem in profit sharing is that an agent confuses between a reinforcement 
rule and a non-reinforcement one. For example, at Figure 1a an agent has to suppress the 
rule (st1,aj) than the rule (st1,ai). At Figure 1b an agent can not distinguish the state st1 and the 
state st2 from observation o (=ot1=ot2). If the agent suppresses the rule (ot1,aj) than the rule 
(ot1,ai) at the state st1, its suppression will reinforce the rule (ot2,ai) to make a loop at the state 
st2. Both the rule (o,ai) and the rule (o,aj) at Figure 1b are needed to receive a reward and 
must not be suppressed. None of needed rules for a reward must be suppressed. On MDP it 
is needless for an agent to think of the rule suppression because there is not aliasing state 
(like Figure 1b). On POMDP it is need for an agent to think of the rule suppression. All rule 
for a reward should be reinforced equally. All rule in an episode should be reinforced 
equally at each state, because an agent can see no difference between Figure 1a and Figure 
1b with one episode.  
Thorem 1: 
On POMDP the condition to distribute correctly the reward is 






0

)( xoxf
 first reinforcement of rule x

otherwise, (5) 

where rule x is reinforced by the function f(x).  ox has to take the constant value at each 
observation ox. 
We propose the Episode-based Profit Sharing (EPS) that fills the need for the correct 
distribution on POMDP. The reinforcement function of EPS is 
 

 
Fig. 1. Aliasing states and a non-aliasing state. 
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state st+1 is the goal state, the agent gets the reward rt+1, and if the next state st+1 is not the 
goal state, the reward rt+1 will be equal to 0, or less than 0 which means the penalty. 
In Markov decision process (MDP) (Sutton, 1990), the probability Pst,st+1, which is the state 
transition probability from the state st to the state st+1 by the action at, is decided by only the 
state st and the action at. If an agent cannot get the all of the state, then some other states are 
observed with the same observation. We call this a partially observable Markov decision 
process (POMDP) (Miyazaki et. al, 1998) (Whitehead & Balland, 1990). In a POMDP 
environment, an agent must select two or more actions at the same observation. 

2.1 Q-learning 
We introduce Q-learning (Watkins & Dayan, 1992) which estimate the rule’s value as a Q-
value. The Q-value means the expected return which is updated as follow: 
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where   is the learning rate, and γ is the discount rate. After many trials, Q-value will reach 
the estimate value of its rule. Thus, an agent selects the rule which has the highest Q-value 
of its state in order to get the optimal policy. Using Q-learning, an agent can update Q-value 
per action-selection without the reward. We call this on-line updating. Thus we can set the 
any value as initial Q-value. We call this optimistic initial value. 
In a POMDP environment the combination of Q(ot,at) and Q(ot+1,at+1) is effected by alias 
problems, where the observation ot and ot+1 means the observation at the state st and st+1 
respectively, so Q-value cannot reach the optimal value. For example, Q(o1,a1) has the high-
value at the state s1, on the other hand Q(o1,a1) has the low-value at the state s2, then Q(o1,a1) 
has no aim.  

2.2 Profit sharing 
In this section, we introduce profit sharing (Grefenstette, 1988) (Miyazaki et. al, 1994a) 
(Miyazaki et. al, 1994b) which is a reinforcement learning method. A profit sharing method 
has some advantages over other learning methods which mean that it can learn in MDP and 
also POMDP environments. In profit sharing, the agent distributes the reward to the 
selected rules (called an episode) when it reaches the goal state. The distributed function f(x) 
is called a reinforcement function, and in MDP (Miyazaki et. al, 1994a) (Miyazaki et. al, 
1994b) it should be formed by 
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where C is the maximum number of conflicting effective rules, and W is the maximum 
length of episodes. We usually use the reinforcement function that implements Equation 2 
as follow: 

 xLxf /1)(  , (3) 
where x is the number of steps from the goal state, and L is the number of actions at each 
state.  

3. Novel profit sharing  

3.1 Reward distribution in a POMDP 
Profit sharing uses the estimate value of rules in selecting rules. The estimate value does not 
be correct value when an aliasing observation confuses the agent observation capability. The 
conventional reinforcement function of profit sharing has this problem. The reinforcement 
of profit sharing is expressed by 
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where ox is the observation from the state sx. In Equation 4, there is no problem because 
profit sharing does not use the relationship between observations. Profit sharing does not 
correctly estimate rules if and only if a rule (ox,ax) is equal to a rule (ox',ax'), a state sx is not 
equal to a state sx', and an action ax is not equal to an action ax'. We discuss this case. 
The case of the problem in profit sharing is that an agent confuses between a reinforcement 
rule and a non-reinforcement one. For example, at Figure 1a an agent has to suppress the 
rule (st1,aj) than the rule (st1,ai). At Figure 1b an agent can not distinguish the state st1 and the 
state st2 from observation o (=ot1=ot2). If the agent suppresses the rule (ot1,aj) than the rule 
(ot1,ai) at the state st1, its suppression will reinforce the rule (ot2,ai) to make a loop at the state 
st2. Both the rule (o,ai) and the rule (o,aj) at Figure 1b are needed to receive a reward and 
must not be suppressed. None of needed rules for a reward must be suppressed. On MDP it 
is needless for an agent to think of the rule suppression because there is not aliasing state 
(like Figure 1b). On POMDP it is need for an agent to think of the rule suppression. All rule 
for a reward should be reinforced equally. All rule in an episode should be reinforced 
equally at each state, because an agent can see no difference between Figure 1a and Figure 
1b with one episode.  
Thorem 1: 
On POMDP the condition to distribute correctly the reward is 
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where rule x is reinforced by the function f(x).  ox has to take the constant value at each 
observation ox. 
We propose the Episode-based Profit Sharing (EPS) that fills the need for the correct 
distribution on POMDP. The reinforcement function of EPS is 
 

 
Fig. 1. Aliasing states and a non-aliasing state. 
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where L is the number of non-detour rules at a state, then the number of rule-1 is sufficient 
for L. We show that EPS can suppress the reinforcement of rules that make a loop. 
If the environment has aliasing states, then the reinforcement function to distribute correctly 
rewards needs Theorem 1. The perceptual aliasing problem does not affect EPS because EPS 
can fill the needs from Theorem 1. So we have no need to think about the affectable of the 
aliasing states. We show the two case, one is that only one state makes a loop, and the other 
case is that multiple states make a loop. Next we propose the sub-episode method that 
reinforces rules with part of an episode. When part of an episode can be used always, the 
reinforcement function matches a geometrical decreasing function, that is the conventional 
function. 
(a) a loop consisting of single state 
Now we discuss the case that one observation makes a loop. The reinforcement value is 
written as Δ. The difference of reinforcement values between a non-detour rule and a detour 
rule is  

 Δ(o, non-detoure rule) > Δ(o, detour rule). (7) 

So EPS can suppress the reinforcement of rules that make a loop in the case of single state. 
(b) a loop consisting of multiple states 
Now we discuss the case that has two or more observations in order to make a loop. The 
difference of reinforcement values between a non-detour rule and a detour rule is 

 Δ(ol, non-detoure rule) > Δ(ol, detour rule). (8) 

EPS can suppress the reinforcement of rules that make a loop in the case of multiple states. 
So we can show the suppression proof of EPS. 
(c) using part of an episode 
We discuss about the sub-episodes (oi,ai), (oi+1,ai+1), ..., (ot,at) (i=1,2,...,t-1) which are the parts 
of an episode (o1,a1), (o2,a2), ..., (ot,at). An agent can learn from the sub-episodes which start at 
the time i. To use sub-episodes has to fill the needs for Theorem 1 in order to distribute 
correctly rewards on POMDP. When an agent can see no difference between the observation 
ok1 and the observation ok2 affected by perceptual aliasing, there may be some difference 
between the state sk1 and the state sk2. In this case, the agent can not use the sub-episode 
which has the rule (ok,ak) is the start rule in order to fill the needs for Theorem 1 (k1 < k ≤ k2). 
That is to say that the agent can use the sub-episode starting at the rule (ok,ak) (k ≤ k1 or k2 < 
k). It is the same when two or many observations are affected by perceptual aliasing. The 
rules between the observation ok1 and the observation ok2 are defined as rules on an 
observation loop. The flag to mean whether the rule (ok,ak) is on an observation loop or not is 
dk which is defined as 
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ok is on an observation loop. 
otherwise, (9) 

An agent can reinforce rules using the length t-i+1 of the sub-episode (oi,ai), (oi+1,ai+1), ..., 
(ot,at). Now the amount f(x) of reinforcement for rule (ox,ax) is 
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Figure 2 shows this reuse sub-episodes. So the reinforcement function of EPS with sub-
episodes is  
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The reinforcement function on MDP that is dk=1 ( Wk ,,2,1  ) and has no same rules in an 
episode is 
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Given W , the reinforcement function f(x) becomes the geometrical decreasing function 
with a common ratio 1/L. This function matches the conventional function. 

3.2 Online updating 
Usually softmax action selection is used for profit sharing because its Q-value means the 
accumulation of past rule values, for example, roulette distribution, Boltzmann distribution, 
and Gibbs distribution. In a POMDP environment, in some states, the agent cannot 
recognize that the observation there is not similar to the observation of another state. In 
other words, it gets the same observation in the other states. This problem is called an alias 
problem (Whitehead & Ballland, 1990).  
Profit sharing is robust in a POMDP environment for two reasons. One is that updating the 
Q-value is non-bootstrapping. Non-bootstrapping means that the agent does not use Q-
values which are in other states in order to estimate the Q-value. Updating the equation for 
profit sharing is as follows: 
 

 
Fig. 2. Reuse sub-episodes (when ok1 = ok2). 
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with a common ratio 1/L. This function matches the conventional function. 
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values which are in other states in order to estimate the Q-value. Updating the equation for 
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Fig. 2. Reuse sub-episodes (when ok1 = ok2). 
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 )(),(),( xfasas xxxx  ,   For all value of x in the episode.  (13) 

where ω(sx, ax) is the Q-value of the rule (sx,ax). Equation 13 was proposed by Miyazaki 
(Miyazaki et. al, 1994a) (Miyazaki et. al, 1994b). This updating euqation does not require the 
Q-value of another rule. So profit sharing is a non-bootstrapping method. 
The second reason is that the action selection of profit sharing is a softmax action 
selection. In order to solve the alias problem, the agent must not select one action always 
often one observation because due to the alias problem the agent must select two or more 
actions. For example, in the state st1 the agent gets the observation o (=ot1), and the action 
which brings the agent near to the goal state is action ai (shown at Figure 1b). On the other 
hand, in the state st2 the agent gets the same observation o (=ot2), however the action 
which bring the agent near to the next state is action aj. Thus, the agent should not select 
one action for the one observation o. The agent must select both two actions, ai and aj, at 
the one observation o. 
The conventional reinforcement learning methods (Watkins & Dayan, 1992) uses greedy 
action selection. When the action selection is greedy action selection, the agent can select the 
rule which has the highest Q-value of its state. Using this select method, a rule which has a 
secondary high Q-value is never selected. Thus the conventional reinforcement learning 
method does not work well in a POMDP environment. In an MDP environment, there is no 
aliasing states (shown in Figure 1a). So greedy action selection can work well. Using 
Equation 14 proposed by Miyazaki (Miyazaki et. al, 1994a) (Miyazaki et. al, 1994b) (called 
accumulative profit sharing), the agent can select two or more actions at the same 
observation. So accumulative profit sharing is robust in a POMDP environment. 
Accumulative profit sharing, however, does not consider the probability of the state 
transition (Uemura et. al, 2007). For example, it distributes the same rewards whatever the 
state transition probability is. The expected value means R  P, where R is the reward and P 
is the transition probability. So we should make the distributed reward nearly equal to its 
expected value. 
A reinforcement function cannot know the state transition probability because many trials 
are needed to find it. Thus it is too difficult to estimate the rule-transition probability using 
only one episode. Some conventional reinforcement learning methods work per action 
selection, where the agent can update Q-values.  
We propose a novel credit assignment method which considers the probabilistic state 
transition. Accumulative profit sharing does not consider the number of selection in the 
same rule. This method, therefore, distributes the same credit assignment to the rules which 
got the same rewards but have a different probabilistic state transition. 
So we must count the number of selections in the same action, and discount the Q-value. 
The novel Q-value is as follows: 

 ),(),(),(),( asasNasNasQ ar  , (14) 

where Nr(s,a) is the number of rewards by the rule (s,a), and Na(s,a) is the number of 
selections of the rule (s,a). 
If the state transition of rule (s,a) is always deterministic, then the number of rewards 
obtained Nr(s,a) is almost equal to the number of selections of the rule Na(s,a). If and only if 

the episode has a loop, Na(s,a) becomes larger than Nr(s,a). If the rule (s,a) has the 
probabilistic state transition, Nr(s,a) / Na(s,a) means an estimated value. In other words, 
Nr(s,a) / Nr(s,a) means the experiential rule transitional probability under its learning 
procedure. 
For example, the conventional Monte Carlo method uses the average estimate value. Its 
estimating function is as follows: 

 ),(),(),( asNasNasQ ar ,  (15) 

This equation brings the Q(s,a) to the average of rewards. This, however, is not 
accumulative. Thus the Monte Carlo method requires greedy action selection. Our proposed 
method accumulates the rewards. Thus it requires softmax action selection. It is also robust 
for the POMDP environment. We call our proposed method the accumulative Monte Carlo 
method. 

4. Experiment 

4.1 Reward distribution in a POMDP 
An agent cannot know how many states affected perceptual aliasing on POMDP. So we 
prepare the experimental environment which has aliasing states by half of all (Figure 3). 
Agent can select one action from four actions (up, down, left and right) at each state. If the 
direction of the selected action is equal to one of the arrow in the figure, then the agent 
moves to the next state. The observation o1 is observed at the state s1, s2, and s3. The agent 
should select randomly one action from three actions except for left action because the agent 
must select right, down, and up at each state. At the state s4, s5, and s6, the agent has to learn 
the action moving to the next state because the observations are equal to the states. The 
performance means received rewards per number of the selected actions, and the 
performance by the optimum policy is 10/12 = 0.833. 
 

 
Fig. 3. The Experimental Environment in a POMDP. 
 
Figure 4 shows the result. The action selection of Q-Learning is -greedy which selects the 
maximum Q-value in 90% probability and random actions in 10% probability. The 
conventional profit sharing with the geometric decreasing function is written as PS 
(Decrease). The performance of PS (Decrease) becomes worse but the proposed profit 
sharing, EPS, can learn more policy. 
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Fig. 4. The learning performances at POMDP. 

4.2 Online updating 
We carried out experiments in a maze (Sutton, 1998) (Figure 5). An agent starts at state S 
and selects one action from 4 actions (up, down, left and right). When the agent reaches the 
goal state G, the reward R = 10 is received, and the agent restarts at the start state S. The 
performance is how many rewards to get per step. All actions have the same probabilistic 
state transition. The agent goes to the selected state by the probability P = 0.8, and goes to 
the neighbour state by the probability P = 0.2. 
 

 
Fig. 5. The maze of Sutton with probabilistic state transitions. 
 
The proposed method has almost the same performance as the conventional method in the 
non-probabilistic state transition. There is a difference if and only if the agent makes a loop 
in the early stage of learning. So in the first learning steps, the proposed method distributes 
slightly less rewards than conventional profit sharing. The performance for the probabilistic 
state transition is shown in Figure 6. The proposed method has better performance than the 
conventional method. 

5. Conclusion 

In this chapter, we have proposed a novel credit assignment method similar to profit 
sharing which considers the aliasing problem and the probabilistic state transition. We show 
that the condition to learn in a POMDP is to distribute equal rewards to rules at the same 
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Fig. 6. The performance between conventional method and the proposed method. 
 
state in an episode. We proposed a novel reward distribution method, called EPS, which 
considers this condition. Next, we consider the probabilistic state transition. If the agent 
experiences the same rule as the previous episode, the current episode has a loop rule, that 
is, its rule has a probabilistic state transition. So its rule value should be less than the 
previous reward. The equation R  P, where R is the reward and P is the transition 
probability, shows the expected value. Thus the temporary rule variable should be divided 
by the number of its rule selection. Finally the temporary rule variable reaches to its 
expected value. We have proposed how to decrease the estimated values of rules per action 
selection. 
In an environment with a deterministic state transition, we show the same performance for 
both conventional profit sharing and the proposed profit sharing. And we show the good 
performance of proposed profit sharing against the conventional profit sharing with a 
probabilistic state transition. 
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performance is how many rewards to get per step. All actions have the same probabilistic 
state transition. The agent goes to the selected state by the probability P = 0.8, and goes to 
the neighbour state by the probability P = 0.2. 
 

 
Fig. 5. The maze of Sutton with probabilistic state transitions. 
 
The proposed method has almost the same performance as the conventional method in the 
non-probabilistic state transition. There is a difference if and only if the agent makes a loop 
in the early stage of learning. So in the first learning steps, the proposed method distributes 
slightly less rewards than conventional profit sharing. The performance for the probabilistic 
state transition is shown in Figure 6. The proposed method has better performance than the 
conventional method. 

5. Conclusion 

In this chapter, we have proposed a novel credit assignment method similar to profit 
sharing which considers the aliasing problem and the probabilistic state transition. We show 
that the condition to learn in a POMDP is to distribute equal rewards to rules at the same 
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Fig. 6. The performance between conventional method and the proposed method. 
 
state in an episode. We proposed a novel reward distribution method, called EPS, which 
considers this condition. Next, we consider the probabilistic state transition. If the agent 
experiences the same rule as the previous episode, the current episode has a loop rule, that 
is, its rule has a probabilistic state transition. So its rule value should be less than the 
previous reward. The equation R  P, where R is the reward and P is the transition 
probability, shows the expected value. Thus the temporary rule variable should be divided 
by the number of its rule selection. Finally the temporary rule variable reaches to its 
expected value. We have proposed how to decrease the estimated values of rules per action 
selection. 
In an environment with a deterministic state transition, we show the same performance for 
both conventional profit sharing and the proposed profit sharing. And we show the good 
performance of proposed profit sharing against the conventional profit sharing with a 
probabilistic state transition. 
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